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TIDAL SPECTROSCOPY AND PREDICTION

By W. H. MUNK+t anp D. E. CARTWRIGHT}
Institute of Geophysics and Planetary Physics, University of California, La Jolla

(Communicated by Sir Edward Bullard, F.R.S.—Received 21 June 1965)
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Nineteen years of hourly tide readings at Honolulu, Hawaii, and Newlyn, England, are analysed
without astronomical prejudice as to what frequencies are present, and what are not, thus allowing
for background noise. The method consists of generating various complex input functions ¢,(t) for
the same time interval as the recorded tide {(¢), and of determining the associated lag weights w in

the convolutions

8t) = SBw,e (t—1) + T w6 (t=T) G (E—T,) + ..
i s ij ss’

A, . .y
by the condition {({—¢)?) = minimum. The two expansions represent linear and bilinear processes;
the Fourier transforms of w for any chosen i (or ) are the linear (or bilinear) admittances.

1 This work was started by W. H. M. at Churchill College, Cambridge University, with support of a

Guggenheim Fellowship.

1 On visit from the National Institute of Oceanography, U.K.

VoL. 259. A. 1105.
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534 W. H. MUNK AND D. E. CARTWRIGHT

Input functions are the (time variable) spherical harmonics of the gravitational potential and of
radiant flux on the Earth’s surface; these functions are numerically generated hour by hour,
directly from the Kepler-Newton laws and the known orbital constants of Moon and Sun, without
time-harmonic expansions (unlike the harmonic method of Kelvin-Darwin-Doodson). The
radiative input is required to predict non-gravitational tides, and it allows for the essential distinction
that the Earth is opaque to radiation and transparent to gravitation.

The input functions are confined to bands, centred at 0, 1, 2, ... c¢/d, which occupy roughly one-
fourth the frequency space (less for radiational inputs) at the —60 dB level. Within these bands
the admittances turn out to be reasonably smooth, as expected. Subsequently we force the admit-
tances to be smooth by truncating the expansion in s. Subject to this ‘credo of smoothness’ the
overlapping gravitational, radiational and nonlinear admittances can be disentangled. The
procedure consists of computing the lag weights by inverting a correlation matrix of input functions,
and the admittances by subsequent Fourier inversion; the varying uniertainties in the tidal com-
ponents are automatically allowed for. The residual record, {(f) —{(t), is associated with the

_ irregular oscillations induced by winds and atmospheric pressure. The residual spectrum smoothly
fills the space between the bands centred on 0, 1, 2, c¢/d and rises sharply toward ‘zero’ frequency,
reflecting a similar pattern in the meteorological spectra. The residual spectrum rises into cusp-like
peaks about each of the strong spectral lines, as might be expected from a low-frequency
modulation of ‘tidal carrier frequencies’, but detailed analyses fail to confirm this hypothesis.
Another feature is a slight 2 cfy ‘jitter’ in the admittances, probably the result of some trilinear
interactions.

Once the ocean’s response to various specified inputs has been determined for a given station, it
can serve as a basis for a tide prediction which is perhaps more physical than the harmonic method
now in use. The convolution formalism explicitly distinguishes between astronomic inputs and
oceanographic response, with Kepler-Newtonian mechanics fully taken into account (in the
harmonic method, K.-N. mechanics serves only to identify principal tidal frequencies). Moreover,
the response method leads to a systematic expansion for weak nonlinearities. The response method
gives better prediction with fewer station constants, but the improvement is small compared to the
low frequency residuals. To reduce these we have tried a Wiener-type self prediction with past
values of the recorded tide as input function. At Honolulu the residual variance can be reduced
by 50 9, for a prediction time of 40 days. At Newlyn where the effect of local weather (storm tides)
is severe, the response method should be generalized to include as additional input functions some
pertinent meteorological variables as well as sea level at other tide stations.
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The following is a list of symbols frequently used in the text. Symbols used only in the
Appendixes, or standard in tidal literature, are excluded.

Y B \

—
;E S g mean gravitational acceleration at Earth’s surface
= 0,4, eographical colatitude, East longitude, mean solar time
@) o geograp g
=~ V(ﬁ,:l; t) gravitational tide generating potential
= O et observed, predicted, and lowpassed or ‘mean’ sea level
T O N g
= o e linear and bilinear predictors of sea level
i Pr(p) associated Legendre function of order m, degree n
§é Yn(0,1) = Ur+iVr  complex spherical harmonic (appendix A, equation (A 5))
gs ! cm(t) = am+1bm complex coefficient in spherical harmonic expansion of V/g (equa-
<O tion (2-11))
L4
SE X2(t) = ar+ifm coefficient analogous to ¢7(¢) for radiational potential
ZE ;€ generalized forms of ¢7(¢) or y™(¢)

gmEm’ bilinear inputs derived from product of ¢” and ¢™
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w(s) = um(s) +ivm(s) weights used in prediction formalism for () in terms of ¢(t—7,)

(equation (2-12))

w;(8), Wy, W, generalized notations for prediction weights

Ty AT time lags used in argument of ¢ or {; usually 7, = sAr
At sampling interval of time series

a(t),&(2) ~local zenith angle and parallax of Moon or Sun

c/d, c/m, c/y
J

cycles per day, month, year
frequency in c/d

Tk, basic tidal frequencies and their coefficients in harmonic tide
development (§25)

G(f),H(f) complex amplitude spectra of {(¢), and of a?(¢) or a(f)

Z(f) = X+iY complex linear admittance of {(¢) to ¢(¢)

G,H,Z,X.,Y,

)T

filtered estimators of G(f), H(f), Z(f) at f = r/355

Y2 estimate of coherency at f = 7/355 (equation (4-11))
Ei, k2, C,0Q, ‘energy’ or ‘variance’ spectra of input (such as «(¢)) and output
(such as {(¢)), and their co- and quadrature spectra
o? variance of ({—{)
o variance of { less variance of ({—{,), where , is the prediction for
species m (equation (4-20))
@ average over time, or over consecutive spectral frequencies.
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1. INTRODUCTION

Since the days of George Darwin, tide records have been analysed for the amplitude and
phase at those particular periods (and their harmonics), which had been previously observed
in the orbital motion of the Moon and Sun. The assumption was implicit that tide records
could be accounted for to any desired degree of precision if only a sufficient number of such
periods were included. In the language of ‘stationary time series’ this is equivalent to the
assertion that the tidal line spectrum exists all by itself, rather than being superimposed on a
continuum (or ‘ noisy’ spectrum). But noise-free processes do not occur (exceptin the literature
on tidal phenomena).

In tide records the continuum is associated largely with irregular oscillations due to wind
and pressure. By 1960 the continuum had been successfully measured from the high
frequencies associated with sea and swell down to frequencies as low as 8 ¢/d (cycles per day),
only two octaves removed from the semidiurnal tides (2c/d). The spectrum was found to
rise with decreasing frequency; extrapolation into tidal frequencies suggested that if one
were to analyse tide records without preconceived ideas as to what periods were present and
what periods were not, then one would obtain just about as much mean-square amplitude
at nontidal periods as had been found for some of the weaker spectral lines. This suggestion
has now been confirmed. It means that the weaker lines are hopelessly contaminated by
noise, and this accounts for some of the inconsistencies from one year to the next.

We decided to take a new look at the tide records, without astronomical prejudice and
freely allowing for the presence of noise. Modern methods of time series analysis seemed
appropriate. Experimental analyses with very long series are readily carried out with high-
speed computers. Continuous hourly readings for half a century or longer are available for

64-2
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536 W.H. MUNK AND D. E. CARTWRIGHT

more than a dozen ports (comprising some 107 observations) and constitute a unique
geophysical record.

As a result of our analyses we are led to propose a method of tide prediction which differs
somewhat from the classical method now universally accepted. The proposed method leads
to slightly greater precision with a lesser number of tidal constants; there are other advan-
tages. It can be said that we are here attempting to improve the one geophysical prediction
that works tolerably well already ; to this charge we plead guilty. But predicting and learning
are in a sense orthogonal, and the most interesting effects are those that cause most trouble
with forecasting : the continuum, the nongravitational tides, and the nonlinear interactions.
Nearly all of the tidal energy is in narrow clusters centred at frequencies of 0, 1 and 2c/d.
For prediction this is of great advantage. For exploration one would have preferred a broad
band excitation, such as tidal forces arising from a nearby supernova.

2. CONCERNING TIDE PREDICTION

(a) Nonharmonic method

The connexion between Moon and tides is so obvious that long before the formulation of
any theory quite satisfactory rule-of-thumb predictions of tide were made and published.
Tide tables constructed by undivulged methods were considered as gainful family posses-
sions and passed on from father to son. The Liverpool Tide Tables published by a clergyman
named Holden carried this to its highest perfection.

Starting 1831, Sir John Lubbock initiated what has been called the nonkarmonic method
of tide prediction. Tides at a given port are represented by certain tidal elements: time and
height of high water, low water. These are related to astronomical observables: the age of
the Moon (reckoned from new Moon), the declination, and the parallax of Moon and Sun.
The prediction is made by successive approximations. For example,

height of high water
= mean height above datum+- correction for age - correction for declination
-+ correction for parallax 4 diurnal inequality.

The corrections were derived by successive regressions between observed tidal and orbital
elements using long series of data. Tables produced in this manner were quite successful for
ports with predominantly semidiurnal tides (as in England). According to Whewell (1837)
‘Some mistakes in these as first published (mistakes unimportant as to the theoretical value
of the work) served to show the jealousy of the practical tide table calculators, by the
acrimony with which the oversights were dwelt upon; but in a very few years, the tables
thus produced by an open and scientific process were more exact than those which resulted
from any of the secrets; and thus practice was brought into its proper subordination to
theory.’
(b) Harmonic method
The harmonic method of tide analysis was developed by Lord Kelvin and Sir George
Darwin'starting 1867, following an earlier suggestion by Laplace along similar lines. The
tidal elevation at a given port is predicted according to

&) = 3 Gy cos (2nk. £+ 0,), (21)
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summed over a set of denumerable frequencies

K=k fy by fyt o thefy (E=0,+1,£2....), (2-2)

where fis a six-dimensional vector whose components are the basic frequencies in the motion
of Earth, Moon, and Sun; namely:

Ji! =1 day is the period of the Earth’s rotation (relative to Sun),
Jf5! = 1 month is the period of the Moon’s orbital motion,
Jf31=1 year is the period of the Sun’s orbital motion,

Sfi! ~ 8-85 years is the period of lunar perigee,

fs5! ~ 18-61 years is the period of regression of lunar nodes,

fé! = 20900 years is the period of solar perigee.

The coeflicients Cy, 0, are found by harmonic analysis of the tide record {(¢) for frequencies
(2-2) specified in advance (to eight significant figures) on the basis of the astronomical
observations.

The ‘integer vector’ k= (k) ky k3 k, k5 k)

completely defines the frequency k. f. Because of the predominant effect of the Moon, there
is some convenience in referring to a lunar day of 1/f{ = 1:035 solar days, the relation being

S =f2—f;+f; The resulting set
(kl kz ks k4 ks ks)(( = (kl k2+k1 k3—kl k4 ks k6)® (2'3)

will be called the ‘Doodson number’.} &, = 0,1, 2 refers to frequencies near 0,1, 2c/ld
(cycles per lunar day), the long period, diurnal and semidiurnal species, respectively. (k; k,)
is called the group number, and (k, £, k,) the constituent number. Neighbouring groups differ
infrequency by 1 ¢/m (cycle per month) ; neighbouring constituents by 1 c/y (cycle per year).
In the language of spectroscopy the tidal spectra show four orders of splitting: monthly
splitting, a fine structure due to yearly splitting, a hyperfine structure from lunar perigee
and regressional splitting, and a further splitting associated with solar perigee.

In principle, prediction by the harmonic method could be performed without any
recourse to Keplerian and Newtonian mechanics, without regard even as to whether any
given term is lunar or solar. All that needs to be done is to analyse a long record into all
possible Doodson numbers, starting with zero & values and proceeding until the computed
amplitudes are below some desired limit. For a limiting amplitude of 10~# times the largest
term, about 400 terms are required, and in no instance does |k| exceed 6.

But this is not a practical procedure. The largest terms are chosen once and for all on the
basis of potential theory. If the sea surface coincided with a potential surface, the departure
from mean sea level (the equilibrium height) would be given by

v_cu ¥, -
& & &
where V() is the gravitational potential due to the Moon or Sun (mass M) whose centre of
mass is at a distance p(#) from the point of observation P, G is the gravitational constant,

g local gravity, and ¥ a suitable reference potential. Let a designate the Earth’s radius, R ()

t Doodson (1921) uses (k, ky+5 ks+5 ky,+5 ky+5 kg+5)( to assure positive indices.


http://rsta.royalsocietypublishing.org/

0
Iy B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

538 W. H. MUNK AND D. E. CARTWRIGHT
the distance between the centres of Earth and M, and £(f) = a/R the parallax. Then (see
appendix A) p = R(1+E—2 cosa)t, (2+5)
where a(¢) is the local zenith angle of M. For any point P

a=a(Z,L), (2-6)

where Z(2) is the polar angle, and L(¢) the (terrestrial) longitude of M. The distance, polar
angle and longitude of M can now be expressed in terms of sines and cosines of six funda-
mental arguments,

R((a R(() L(a Ry, Z, L, = functions of (2ﬂth/24h: }Z((: h@)p«) n((aﬁ@) > (2'7)

whose frequencies are the components of f in equation (2). Here ¢ is Greenwich time, /¢ and
ke are the mean ecliptic longitudes, ¢ and p, the longitudes of perigee, and z( the longitude
of the Moon’s nodes.T The arguments /g, 4, ..., po are usually given in the form

A+BT+CT?, (2-8)

where T'is in Julian centuries since 1 January 1900, 4 is the phase at 7" = 0, B = 2nf denotes
the frequency in cycles per century, and C7? is a small correction arising from planetary
perturbations and tidal friction.

A systematic development of equations (4) to (8) leads to the trigonometric expansion

V)g = 3 Cycos (2nk . ft-+6y),
K

which associates any Doodson number k with an amplitude Cy and phase &, consistent with
potential theory. In this way the frequencies of the important terms are selected.

Darwin considered pg, n¢, ps as sensibly constant over any one year, and expanded in
terms of ¢, A, ko only; the frequencies are then fully defined by the constituent numbers
(kykyks). Darwin’s expansion included 39 terms, none smaller than 1073 of the largest
amplitude, and all within the limits |£| < 3. This development was generally accepted by
1883, and led to substantial improvements over Lubbock’s method. But it was found that
when all Darwinian constituents were removed, the residual tides still showed significant
components. Consequently Doodson carried out the expansion into some 400 terms
exceeding 10~# of the amplitude of the largest term and associating each term with the
complete Doodson number.

In the application of the harmonic method one encounters an awkward situation which
is not corrected by the more complete expansion of Doodson’s. At most tide stations records
are available for only a few years or less, and it is not practical to resolve terms whose
frequencies differ by less than 1 ¢/y. We are back to constituents (£, &, £;) of the Darwin type.
The accepted procedure is to replace equation (1) by

&) = g fi Ccos (2mK £+ Oy +uy), (29)

+ The classical notation for kg, ke, p¢, ¢, po is 5, b, p, 1, q.

1 But Doodson’s statement that 19 years of record are required to separate regressional terms is incom-
plete. Any four known values of {(t) will provide four equations to solve for the amplitudes and phases
C,, 0,, Cy, 0, at frequencies f;, f, regardless of the frequency separation. In an ideal record, 4-hourly values
could resolve regressional splitting! A statement concerning the required length of record has to take into
account the underlying noise spectrum and, when this is done, the situation is not much better than stated
by Doodson (Munk & Hasselmann 1964).
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where the factors f;(¢), 4, (¢) are taken as constant over any one year, but vary from year to
year, principally with the nodal period of 18-61 y. The f, u factors were introduced by Darwin
and are tabulated in manuals on tide prediction. The 21 000y variation (frequency f;) is
ignored. The use of slowly varying amplitudes and phases implies that the Darwin-Doodson
method is not, strictly speaking, a harmonic method.

At European ports and elsewhere the distortion of the tides by shallow water effects cannot
be ignored. This situation has been met in various ways. Following the suggestion of Ferrel
and Darwin, one can introduce further constituents whose frequencies are the sums and
differences of the important ‘linear constituents’. For some ports the number of required
shallow water consituents becomes unmanageable. In England, Doodson (1947) then
examines by further harmonic analysis the residual between observed and predicted tides,
with as many shallow water constituents included as is possible. In Germany, Horn (1948,
1960) has introduced a ‘folding scheme’ (Appendix C) and in Holland one relies on a
nonharmonic method.

(¢) Response method

The complexity of the Darwin—Doodson expansion is, in a sense, an artifice arising from
an insistence of expressing the tides as sums of harmonic functions of time. With %, p, n as
given functions of time, it is nowadays relatively simple to evaluate equations (4) to (8)
numerically and obtain a computer-generated time series V(¢). Suppose that hourly values
V(t) have been computed for a given port. One could attempt a prediction for time ¢ as a
weighed sum of past and present values of the potential,

& = Esjw(s) V(t—1,), (2-10)

with the weights w determined so that the prediction error {(¢) —{(f) is a minimum in the
least-square sense. The weights have a simple physical interpretation: they represent the
sea level response at the port to a unitimpulse V(¢) = 8(¢), hence the name ‘response method’.
The actual input function V(¢) may be regarded as a sequence of such impulses.

The formulation (10) has the defect that it assumes predictions for any port to depend
only on the equilibrium tide at this port. One would do better to evaluate the equilibrium
tide at a grid of points surrounding the port, thus obtaining V;(¢),V,(¢), ..., and then pre-
dicting according to

€)= Sun(s) Kt—1) + Suy(s) Vyt—1) + ..
Alternatively one could expand V' (¢) in the vicinity of the port (position 6, 1,) in terms of
a Taylor series V- (0—00) Vyt-(A—Ag) V& ...,

numerically evaluate V(#) and its spatial derivatives V, 7, ... at position f,, 4,, and attempt
a prediction according to

{) = 2wy(s) V{t=15) +Zwy(s) Vp(t—1,) +Zws(s) Va(t=7,) + ..

Our scheme is to expand V() in spherical harmonics,

V6,8 =g 3 io [az() U (6, ) +b3(2) Vir(6,1)], (2:11)

n=0 m=
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and compute the coefficients a7(f) and b7(¢) for the desired time interval. The convergence
of the spherical harmonics is rapid and just a few terms m, n will do. The m-values separate
input functions according to species. The prediction formalism is thent

{0 — 3 STup(s) aple—r) +u(s) op(e—1)] (212)
The prediction weights w?(s) = u?*(s) +-iv™(s) are determined by least-square methods, and
tabulated for each port (these take the place of the tabulated coeflicients Cy, 0, in the
harmonic method). For each year the global tide function ¢7'(f) = a?(¢) 4-1b7(¢) is computed
and the tides then predicted by forming weighted sums of ¢ using the weights w appropriate
to each port. The spectra of the numerically generated time series ¢(¢) have all the com-
plexity of the Darwin-Doodson expansion; but there is no need for carrying out this expan-
sion, as the series ¢(¢) serves as direct input into the convolution prediction. There is no need
to set a lower bound on spectral lines; all lines are taken into account in an optimum sense.
There is no need for the f, u factors, for the nodal variation (and even the 21 000y variation)
is already built into ¢(¢). In this way the response method makes explicit and general what
the harmonic method does anyway—in the process of applying the £, u factors. The response
method leads to a more systematic procedure, better adapted to computer use. Its for-
malism is readily extended (as we shall see) to include nonlinear, and perhaps even meteor-
ological effects.

The harmonic and response methods are closely related. As the lower bound on spectral
lines is reduced, and as the number of spherical harmonics and lags are increased, the results
of the two methods rapidly approach one another. It should be stated at the outset that
under ordinary circumstances the improvement in the accuracy of tide prediction by the
use of the response method is slight. But there is an advantage in introducing Kepler—
Newtonian mechanics from the very start, and the prediction formalism (12) makes the
separation of astronomy from oceanography more explicit than does equation (1). In the
sense that the response method does not involve a time-harmonic expansion (it involves
only a spherical-harmonic expansion), it is a move back toward the nonharmonic method
of Lubbock.

3. InPUT FUNCTIONS

We have written a computer program for generating the coefficients ¢7!(¢) arising from
lunar gravitational, solar gravitational, and radiational effects, for any specified values of
m, n, and for any prescribed start time, time interval and end time. The numerical scheme
follows a series of steps already outlined in equations (2:4) to (2:8). The derivation of the
gravitational potential does not differ much from that given by Doodson (or for that matter
by Darwin), but there are some innovations. The normalization of spherical harmonics is
adapted from quantum mechanics, as this leads to the most symmetrical expressions for
¢m(t). We have included some third-order terms in the lunar eccentricity, and allowed for
planetary perturbations of the solar eccentricity. Numerical values concerning the Sun—
Moon-Earth system have been revised. Details are found in the appendix.

 Laplace attempted to predict the tides at Brest by convolutions upon major terms with single weighted
lags. The poor results so obtained led him to propose a harmonic method.
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The use of the convolution method carries some obligation to include a complete set of
realistic input functions. We must do something about such features in the tide records that
cannot be accounted for by the gravitational tide-producing forces.

For example, sea level responds to surface pressure associated with atmospheric tides.
At temperate latitudes, maximum pressure occurs around 10a.m. and 10 p.m. local time,
minimum pressure at4 a.m. and 4 p.m., with amplitudes of the order of 1 mb (gravitational
forces on the atmosphere can account for only 1 9 of this variation). There are also irregular
day-to-day pressure fluctuation, possibly by many millibars, associated with ‘weather’.
In the former case we have a process with a discrete (or line) spectrum whose frequencies
overlap the gravitational line spectrum. In the latter case the process has a continuous (or
noisy) spectrum which underlies the discrete spectrum. Similarly, the land-and-sea breeze
régime is associated with a line spectrum, principally at 1 and 2 ¢/d, as well as a continuum.
Storm tides are an extreme case of the latter type.

September sea level typically exceeds March sea level by 20 cm in the northern hemi-
sphere; the reverse holds in the southern hemisphere (Patullo, Munk, Revelle & Strong
1955). Tidal effects and atmospheric pressure effects can only account for 109, of the
seasonal oscillation. Local changes in the specific volume of the water associated with water
transport, solar radiation, back radiation, evaporation, etc., appear to be responsible. The
total mass of the water column plus air column remains sensibly constant, so that a pressure
recorder on the sea bottom would hardly sense the seasonal fluctuation in sea level. In
addition, there are irregular variations from year to year. Again we may refer to the discrete
spectrum (principally at 1 and 2c/y) and the continuum.

We distinguish between three input functions, with the following spectral properties:

(i) The known gravitational line spectrum (lunar and solar).
(ii) The unknown nongravitational line spectrum.
(iii) The unknown nongravitational continuum.

(ii) and (iii) are ultimately the result of radiational processes, but at different stages of
‘orderliness’. In a highly dissipative atmosphere strongly coupled by nonlinear processes,
the line spectrum arising from the daily and seasonal variation in solar radiation is no longer
discernible in the ‘weather’ and in the long-term variations. The prediction problem
associated with (iii) will require special consideration.

We need an input function to model (ii). The function must, in some vital way, be related
to the daily pressure and wind variations and to the seasonal changes in ocean temperature,
and yet avoid the need for detailed solution of these complicated processes. For a trial input
we define the radiational function

R = S(Ry[po) cosa in day-time (0<a<<

DO

),
= 0 in night-time (37 <a<7),

which varies with the radiant energy falling on a unit surface in a unit time. Expansion in
spherical harmonics (appendix A)jgives

2 Rof, 2n+17(1) (—1)...(3—n)
sl 2 T [ mwser 150)

65 Vor. 259. A.
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where R, and P,(4) can now be expressed in terms of the fundamental orbital constants,
Jjust as was done for the gravitational potential

V M@ ?+1(R@)n+1
Lo=ai2 w10} TP ()
¢ " My, N Ry W

The essential distinction between gravitational and radiational inputs is that the Earth
is transparent to gravity and opaque to radiation, and this is contained in the formulation of
the input functions. The ‘clipped’ day and night distribution of the radiation function is
much richer in higher harmonics than the gravitation function, as observed. One may hope
that the seasonal modulation of the daily pressures and winds is properly modelled by the
radiation function, so that the fine structure in the input spectra near 1, 2, ..., c/d is in the
proper proportion.

4. LINEAR ANALYSIS
(@) The physical system

Before analysing an actual record of sea level, we must first outline the main physical
concepts involved in a linear régime, and the corresponding processes required to analyse
them. Nonlinear perturbations will be considered in §7. We concentrate attention on the
coefficients a™(¢), b7(t) of the gravitational potential V(0,4; t) (equation (2-11)). The com-
plex input potential and the recorded tide can be represented, for any m, n, by

G =" ewemra, Hp) =" L, (+1)
respectively. The same quantities are involved in the ‘impulse response’ relation,

{(t) = real part of fwc*(t~7) w(r) dr, (4+2)
0

where ¢* = a—ib is the complex conjugate of ¢, and w(f) = u(f) +iv(¢) is the sea-level
response following an instantaneous value ¢* at time ¢ = 0. The Fourier transform of the
impulse response is the ‘admittance’

Z(f) = [ w(r) e dr = H(IG(/), (43, ¢4)

embodying an ‘amplitude response’ | Z( f) | and a phase lead arg Z( f). Relations analogous
to (4+1)—(4-4) are fundamental to a wide variety of linear noise-free physical systems.

A common approach is to estimate values of G( f) and H( f) at appropriate frequencies by
spectral analysisof ¢(¢) and {(¢) respectively, and then form Z( f) = H(f)/G(f). This method
suffers from neglect of the ‘noise’ which is inevitably present in /. In that event (4-4) is no
longer a valid definition of Z. An estimate of Z is obtained by (4:3), or by cross-spectral

analysis. _
(b) Noise-free estimates for discrete sampling

For sampling at discrete intervals, spectral estimates G,, /1, of a;() and {(¢) were formed
according to G, = 20~V S (1) a(t) exp (27rirt/355),}
4

H, = o7V W () £(t) exp (2rire355), )
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where the summations is from ¢ = —355d to + 355d at intervals Az, n = 710/At, and W' (¢) is
the ‘cosine-taper’ function 1+-cos (7/355), inserted for rapid convergence of ‘side-band’
effects. In most cases a(¢) and {(¢) have both previously been ‘smoothed’ by a low-pass filter
with cutoff at 4c/d, so that 3h values (At = }day, n = 2840) are used in (4-5) without
trouble from ‘aliasing’. The period of 355 days is close to 13 lunar months and to 1 year,
so that all the tidal constituents fall centrally within the filters corresponding to integral
values of  (Cartwright & Catton 1963). Note that the spectrum of 4(¢) is not required,
since it is identical with the spectrum of a(#) with a phase change of 7.

From (4-5) we form estimates of the input energy spectrum Ei, the output energy spectrum
E?, and the cross-spectrum C,-+i@),, namely

Ei=(3G,G¥y  E=QGHHY  C+iQ,— (3G,H, (4-6)

where the ensemble averages are taken for consecutive values of 7, or, more accurately, by
averaging quantities for the same r derived from analyses at different epochs. Since the input
energy is noise-free, we may express the cross-spectrum as

C.+iQ, = (G.G*Z,+ |N,| |G,| e-r), (47)

where N, is the noise element in /1, and v, its phase relative to G,. The phase of the noise is
random?, so the second term in the ensemble average is negligibly small. The ad-

mittance estimate 7 _ y iy — (C,+iQ,)/EL = (G, H¥)/G,G¥) (4-8)

is not biased by noise effects, whereas H,/G, is always greater than |Z,| by a proportion
dependent on the noise : signal ratio, no matter how extensive the ensemble averaging. The
sampling variability of the admittance estimate (4-8) is discussed in appendix B.

A convolution similar in form to the impulse response relation (4-2), but expressed in
discrete time intervals, is s
{(t) = real part of 3 ¢*(t—7,) w,, (4-9)

s=0

to which corresponds an admittance function
s
Z(f) = wn+ 3 w,exp (—2rifr,). (4-10)

At the discrete frequencies f = 7/355 c/d, Z(f) equals precisely Z, in equation (4-8).
An important parameter is the coherence
2 C+QF
V= HE
which is positively biased (to remove the bias, see appendix B). We shall use y2in a significant
way to separate the sea-level energy E? into two parts, namely

Z}¥EL, (4-12)

(4-11)

‘coherent energy’ = y2E? = Z,

which is the sea-level energy in the appropriate frequency band that may be directly
ascribed to the tidal effect concerned, and
‘noncoherent energy’ = (1—y2%) E2, (4-13)

1 We include in the ‘noise’ such tidal components that are incoherent with the particular spherical
harmonic under consideration (see § 4¢).
65-2
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which is effectively noise energy, but may contain energy coherent with other input
functions.
(¢) Lag intervals and the credo of smoothness

It is possible that an arbitrary sequence of lag intervals 7, could be chosen along with the
coeflicients u, v, in (9) to optimize the correspondence of (10) to a given natural system.
However, there appears to be no simple rule for choosing such a sequence, apart from
systematic trial and error, and after some experiments which proved tedious and unre-
warding we decided to restrict the analysis to arithmetic sequences only.

With 7, = sA7, the formalism becomes more elegant, and one may think of the convolu-
tion (9) as equivalent to fitting a Fourier series (10) to the actual admittance Z(f). The
Fourier series has periodicity 1/A7 in f, which is of course unrealistic, but quite acceptable
in practice provided 1/Ar is greater than twicef the bandwidth AF within which the
spectrum G(f) of the spherical harmonic m, # is confined. This choice of an optimum ‘lag
interval’ Ar = 1/2AF is somewhat analogous to the choice of frequency interval Af = 1/2AT
for a spectrum of a time series of duration A7". The effective bandwidth for the gravitational
potentials P} is from 0-8 to 1-1 ¢/d, and for P% from 1-75 to 2-05 c/d. This suggests a band-
width of 0-3 ¢c/d for any of the input functions, and a corresponding ‘time resolution’ Ar of
1-7 d approximately. Some numerical tests for Honolulu showed A7 = 2 days to be a good
compromise, and this interval was adopted. A lag interval of 2d seems surprisingly long;
off-hand one might have expected something like 3h, one quarter of the principal tidal
period. But the essential factor is not the signal period but the interval (AF)~! during which
interference from components within the band significantly alter the signal.

The convolution is carried out for lags 7 = 0, A7, 2Ar, ..., SA7. It is important to decide
what the maximum lag should be. The fundamental consideration is the wiggliness in the
admittance function Z(f). If the shortest wiggles have a ‘wavelength’ of Fc/d, then
SAT = 1/F is the appropriate choice for the maximum lag. Again this is more familiar
in the time domain: if 7"is the shortest period present, then the spectrum extends to some
maximum frequency 1/7. We find no evidence for wiggles in Z( f) shorter than % c/d, and
accordingly have terminated the convolution at a lag of 6d (§' = 3). In reverse, if wiggles
shorter than § c/d should occur, these will be smoothed out by the termination in lag times.
In this way we impose a ‘credo of smoothness’ on oceanic response characteristics. We do
not believe, nor will we tolerate, the existence of very sharp resonance peaks. Our results
so far confirm a degree of smoothness consistent with the adopted limit.

According to the Nyquist (or sampling) theorem, a curve needs to be sampled at half the
shortest wavelength in order to be adequately represented by the discrete values. With
respect to the oceanic admittance, this implies sampling at 1/(2F) = i c/d ~ 0:08c/d. In
fact, the spectrum G( f), and therefore information about Z(f), is concentrated in narrow
groups separated by Af = 1 ¢/m »~ 0-03 ¢/d, and this sampling is at closer intervals than the
limit 0-08 c/d imposed by the credo of smoothness.

We have here two entirely independent considerations concerning frequency resolution.
'The ocean’s capacity for sharp resonances imposes certain requirements on Afif the response
is to be adequately sampled; the inclination and ellipticity of the Moon’s orbit determine

T 1/AT = 1 X AF is theoretically possible, but would entail a discontinuity near the limits of the frequency
band, making for slow convergence of the series.
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the best available sampling. Is it adequate? The fact is that the Moon ‘oversamples’ the
response by a factor of 2 or 3. Higher order splitting is associated with even more severe
oversampling. The advantage of the response method over the harmonic method is closely
related to the degree of oversampling.

The relative advantage of the response method over the harmonic method increases
then with the complexity of the spectral input and diminishes with the complexity of the
admittance. In the limiting case of a continuum input (infinite oversampling), the response
method is the only possible method ; for unresolved lines it is the only practical one.t But
the advantages may be there even for a resolved line spectrum. At the same time the imposed
smoothness of admittance does impose upon the user the responsibility of having generated
realistic input functions, and in this sense the response method requires more care than the
harmonic method.

(d) Realizability of response

Equation (10) restricts the admittance Z(f) = X(f) +iY(f) to orthogonality in X andY.

This restriction has been dropped by permitting negative as well as positive values of s. For

then s
() = :Z_S[usa(t—sAT)+vsb(t~sAT)], (4-14)
X(f) =t X [, u_.) cos (2nfsd) + (o, ~o_,)sin (2nf57)],
. (4-15)
Y(f) =vy+ g} [(u,—u_,) sin (2mfsAT) — (v,+v_,) cos (2mfsAT)].

This permits 25+ 1 degrees of freedom as compared to §+1, without exceeding the limits
discussed in the preceding section.

The procedure apparently violates causality, the prediction (14) depending on both
future and past values of the input functions. An equivalent statement is that the admittance
(15) is not physically realizable. But since our knowledge is limited to a few narrow frequency
bands, we are under no obligation to fit Z(f) over all frequencies. In fact, the periodic
representation of Z( f) inevitably makes (15) invalid outside the known bands. (Restriction
to positive lags would lead to an admittance (15) which is realizable, but still not applicable
outside the bands because of the imposed periodicity.)

(e) Multiplets and multiple components

We now turn to certain fundamental properties of the input functions. The difficulty of
the subject is associated with the complexity of the input spectra as well as the multiplicity of
processes associated with each of the spectral lines.

What appears as single lines at 0,1, 2, ... ¢/d in the analyses of 1 day’s record is split into
multiplets separated by 1c¢/m in the analyses of 1 month’s record. In turn, each of these
lines becomes a multiplet with c/y separation when a year’s record is analysed, and once
again these lines are split at nodal frequencies when 18-6y are analysed.

Each of the spectral lines contains some contribution (possibly quite small) from Moon
and Sun. The solar angles /¢, po appear in the lunar parameters because of the strong

1 The f, u factors (§2(b)) are a case in point.
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perturbation of the Moon’s motion by the Sun; the lunar angles appear in the solar para-
meters because of the perturbation of the Earth’s motion by the Moon.

Nonlinearities in the Keplerian laws and Newtonian mechanics produce sum and
difference frequencies that are responsible for the complexity in the ‘linear’ input functions.
Hydrodynamic nonlinearities inherent in the Navier—Stokes equation lead to additional
splitting and produce overlapping frequencies. The peculiarity of the situation arises then
from the circumstance that the Kepler-Newton nonlinearities are in series with the Navier—
Stokes nonlinearities.

The k.f space introduced in § 2-2 contains all possible frequencies, allowing for celestial
and terrestrial nonlinearities. In reverse, every point in k. f space is affected by the Sun and
Moon and by hydrodynamic nonlinearities. Strictly speaking, there are no pure lines.
But it is convenient to speak of mixed linest in the sense that they contain significant multiple
components. For example, (i) mixed luni-solar gravitational tides, principally K, and K,
(but there is no point ever in separating lunar from solar gravitational effects) ; (ii) mixed
linear and shallow-water tides; and (iii) mixed gravitational and radiational lines that occur
in narrow bands, about 4 c/y wide, of groups (0 0) (1 1), and (2 2).%

The credo of smoothness permits the separation of multiple components.

(f) Sequential and lumped analyses

In the following discussion of tidal observations we have used two distinct (but closely
related) methods of estimating admittance. In the sequential scheme we first perform the
cross-spectral analysis between the observed sea level {(f) and the input function ¢%'(¢) to
obtain the ensemble-averaged admittances (Z,)F (equation (4:8)). Smoothed curves are
fitted to the point estimates of (Z,)§ by least squares, with weights inversely proportional
to the sample variances. The second degree harmonics of the gravity potential multiplied
by these smoothed admittances is then subtracted vectorially from the sea-level spectra to
form residual spectra. These residuals are then compared with ¢§(¢) in exactly the same
fashion and new residuals formed. These in turn are compared to radiational inputs, etc.

Multiple components were separated as follows: the spectral estimates H, of sea level {
for any double component may be written

H, = Z*(f) G,+Z™*(f) G+ N, (4-16)
where G, and G, are the respective input spectra, and Z* and Z'* are the conjugates of the
associated admittances. (Z'*G, cannot be classed with the noise N,, as in (7), because its
phase relative to G, is constant). We cannot solve (4:16) for both Z and Z’, even when the
noise is reduced by ensemble averaging. The six equations for the cross-spectral elements
G*H, G'*H, G*G' are interdependent, and reducible to two independent equations for the
four unknown X, Y, X', Y’'. We therefore need a least-squares solution for two or more conse-
cutive values of 7 for which the admittances Z and Z’ can be regarded as constant, or slowly
varying. Strictly even the least-squares solution is possible only if the ratios G, /G; vary with 7,
but in practice this seems to be the case. The equations involved are straightforward.

+ We shall not consider nonidentical frequencies which merely differ by a very small quantity, such as
(fu—2f5), since in all such cases listed by Doodson at least one of the amplitudes involved is negligibly small.

1 Group (0 0) contains the radiational inputs &, @3. Group (1 1) has a triplet input x}, x}, ¢}. Group (2 2)
contains x3, ¢2.
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An alternate scheme (which we adopted) is to perform a lumped analysis involving all
selected input functions in one operation (§ 4 (g)). This yields the weight matrix from which
the admittances are computed by the appropriate Fourier transforms (equation (4:15)).
The coherence at different parts of the spectrum is automatically taken into account.
Multiple inputs are separated subject to the credo of smoothness.

The sequential scheme has certain pedagogical advantages, but the lumped analysis is
more straightforward and precise and does not impose conditions concerning the relative
magnitudes of successive input functions.

(g) The weight matrix and prediction variance

It remains to comment on the computations involved in deriving the weights «, v, for a
particular sea-level record. The predicted sea level is given by

o) = 3 S[(ur),am(t—sAr) 4 (um), bm(t—sA7)] +radiational terms ..., (4-17)

m,n s

with the weights determined by the condition that the time average

0% = ([5(6) =01

be a minimum. We can use the general notation
{) = Swa,
z

with the understanding that w; designates any of the weights (u7), or (v7),, and ¢; the asso-
ciated lagged input a?*(t—sAr7) or b7(¢—sA7), whatever the value of m, n, 5, and whatever
the source of the terms, gravitational, radiational, or otherwise. The weights w; are found
by solving the matrix of linear equations

[M;] [w] = [Ri] (4-18)
where M; = {ge;), R;={¢;0). (4-19)

Mean values are removed from {(¢) and ¢,(¢) when necessary.

For long records the mean covariances between different tidal species are very small and
the matrices may be split into separate blocks, T one for the spherical harmonics contributing
to each species m, and inverted separately. The minimum value of ¢2 is then

02, = (C3(8)) — 0k — 0t —03—....

We refer to o5 = 2w R™, (4-20)

z

as the ‘ prediction variance’ for species m, with the meaning that the convolution prediction
reduces the variance of residual (observed minus predicted) sea level by 2. It is not in
general the same as the variance of the prediction itself, which is

([ufmdm]?).
As in spectral analysis, 355 days is a good period for summing the cross-products, and
19 x 355 days is considerably better. In order to compare prediction variances for different

1 This is not only a matter of mathematical convenience; in fact, accuracy of the prediction depends on
the precision to which the matrix is separable, because of the band-limited validity of our admittances.
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combinations of variables, it was found important to compute the mean products of lagged
quantities with high precision. For example, if ¢; = a} (1), ¢; = a3(t— A7), ¢ = a}(t—2A7),
and 3 h values are summed for 355 days, then

2837 2837
M,; = (2840)! lEOCicj’ not (2840——A7)“1t§ €;Cis
- Zar

and M;; may not be assumed equal to M;; as in conventional time series analysis. In a
comparison of prediction variances arrived at by slightly different schemes it was found
desirable to form the summed products (19) by integer arithmetic. (The computers used,
CDC 1604 and 3600, permit storage of integers up to 15 significant figures.)

5. ResurLts ror HonoruLu

(a) The observations

We chose Honolulu for our first analysis. Itis an oceanic island relatively free from shallow
water effects. About fifty years of hourly readings were available and these have been
carefully edited and stored on magnetic tape.t Tides of diurnal and semidiurnal species are
of about equal intensity. We analysed most thoroughly the 20 x 355 day period 25 July 1938
to 1 January 1958; in the very low-frequency range we used all available 52 years, 1905 to
1958. Two short gaps, 11 days in 1950 and 13 days in 1953, and a larger gap of 50 days in
1942, were filled by conventional harmonic prediction with linear trends. The hourly
series were smoothed by a low-pass filter with cut-off at 4c/d, and thinned 3:1 to give
8 readings per day. This reduced the bulk of the subsequent computations. The resulting
‘Nyquist’ frequency of 4 ¢/d is quite high enough, because tidal energy at frequencies above
3 c/d is negligible.

(b) The spectrum at c[m resolution

The heights of the columns in the upper two panels of figure 1 refer to the spectra, £ and
E?, of equilibriumy (n=2) and recorded sea level. The two time series were subjected to
identical filtering processes, and to ensemble averaging over 19 consecutive periods of
355 days (§4 (b)), leading to estimates of the constituents (£, %, k5) at 1 c/y resolution. The
plotted group estimates (k, k,) at 1 c/m resolution were obtained by forming the averages

ks=3
(ky ky) = 2 (ky Ky k)
ks=—3
over seven adjoining constituents.

t The methods are described in ‘A user’s guide to BOMM; a system of programs for the analysis of time
series’, by Bullard, Oglebay, Munk & Miller, Institute of Geophysics and Planetary Physics, University of
California, La Jolla, April 1964 (unpublished).

1 In § 5 we use equilibrium level

an(t) Un(0, ), 6 = 68°42, A = 202° 13/,

rather than the gravitational potential am(¢) for the input function in equation (4-5). For a fixed m, n the two
functions differ only by a constant amplitude factor and phase shift. The physical meaning of equilibrium
level is somewhat clearer and there is some advantage in referring to it, provided the station does not lie
close to a nodal colatitude of one of the spherical harmonics. The discussion of prediction variance (§ 6) is
based on inputs a?(t), b7().
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Ficure 1. Honolulu tide spectra at 1 ¢/m resolution for spherical harmonics of degree 2. P, P}, PZ,
refer to tidal species 0, 1, 2 respectively. The upper panel shows the energy of the gravitational
equilibrium tide at Honolulu relative to 104 cm?; some ‘Doodson group numbers’ are written
below the columns. In the next two panels, the observed sea spectrum is designated by the
total height of the columns. In the upper of the two, the height of the filled portion designates
the energy coherent with the equilibrium tide; in the lower, the height of the unfilled portion
designates the noncoherent energy. The left scale refers to energy per column, the right scale to
energy per c¢/d. In panel 4, the filled circles refer to the real part, the open circles to the
imaginary part of the admittance. In panel 5, they refer to |admittance| and phase lead in
radians, respectively. The vertical lines show the 959, confidence limits of the circles. The
curves represent the admittance functions derived from the convolution process.

66 Vor. 259. A.
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In the equilibrium spectra the significant energy (~ 10~*cm? or more) is contained in the
groups (0 1)to (0 4), (1 —4)to (1 +4)and (2 —4)to (2 +4) with energy gaps between
these groups. In the recorded spectra the same groups are prominent, but there are no gaps
between. Rather, a plateau of roughly 10-2cm? per group is attained, corresponding to an
energy density of 1 cm?/c/d. Presumably this is the nontidal continuum which underlies
the tidal line spectrum (Munk & Bullard 1963).

The hypothesis can be tested by considering separately the coherent and noncoherent parts

of the recorded energy, 2E and (1—p2) By,

7

corresponding to the filled and unfilled portions of the columns. Panels 2 and 3 contain the
same information, the two displays being necessitated by the logarithmic scale. In columns
containing largely coherent energy the noncoherent portion is perceptible only in panel 3,
and vice versa. It will be seen that the coherent recorded energy corresponds closely to
equilibrium energy. Noncoherent energy fills the frequency space between prominent
groups; furthermore, it can be traced across the groups, and there it is found to peak,
particularly with respect to the group (2 0) which contains the strong M, constituent. This
is the ‘tidal cusp’, discussed by Munk, Zetler & Groves (1965). (However, as we shall see
later, their simple explanation in terms of interaction with the low frequency continuum
does not fit the facts.) The relatively large fraction of noncoherent energy in the solar
groups (1 1) and (2 2) will be ascribed to radiational processes.

The noncoherent energy contributes a very small fraction to the total energy in species 1
and 2. The reverse situation applies for species 0. The anomalous peak and trough in the
continuum at about 0-5c/d has been attributed by Longuet-Higgins (1965) to a resonance
effect in the theory of planetary waves.

The circles in the lowest two panels of figure 1 show the admittance X, ¥, and |Z |,
arg (Z,), derived from (4-8). The confidence limits (appendix B) illustrate the unreliability
of tidal estimates whenever the energy is below continuum level. The admittances are
obviously far from constant within any tidal species, as already known from published tables
of phase lag « (essentially the same as —arg (Z)); but the variation in admittance is suf-
ficiently smooth to be simulated by the convolution process discussed earlier. In fact, the
plotted curves represent the admittances from a lumped analysis subject to the credo of
smoothness; input parameters are given in table 2, § 6.

The admittance circles for the luni-solar groups (1 1) and (2 2) were derived by a special
treatment. Since the strongest lines in the groups contain multiple input functions from
nonseparable gravitational and radiational potentials, the admittance estimators used
for the lunar groups are not applicable. However, there are some nontrivial purely lunar
lines in these solar groups which modulate the lunar parts of K, and K, at the nodal cycle of
18-6 years, the most important being (1 100 1) and (220 0 1). The energy at these lines
is certainly not affected by radiation. We isolated these, and some lesser neighbouring lines
by analysing the modulations of the K; and K, constituents over 19 successive years,
deriving admittances from their cross-spectral components as before. The resultant admit-
tances, as plotted at the appropriate frequencies, left a very low residue of ‘noise’. They fit
well into the general trend suggested by the neighbouring lunar zones.
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Ficure 2. Honolulu tide spectra at 1 c/y resolution for the low-frequency spherical harmonic PJ.
Some ‘Darwin’ symbols and ‘Doodson’ constituent numbers are included in the upper panel.
Legend is otherwise as in figure 1.
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(¢) The spectrum at cly resolution

Figures 2 to 4 show the same spectra and admittances at greater resolution. Here we see
the tidal ‘constituents’ named by Darwin and other constituents of lesser importance,
usually unnamed or allocated to nonlinear ‘over-tides’. In figure 2, the constituent labelled
MSfis the linear lunar input at (0 2 —2), not the S, — A4, nonlinear interaction at the same
frequency. The coherent energies at 1 and 2c/y (Sa and Ssa) were not plotted because they
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Ficure 3. Honolulu tide spectra at 1 c/y resolution for the diurnal spherical harmonic P}.
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include radiational energy and give anomolous admittances. Separation of gravitational
and radiational energy is possible by the method of multiple components. A better
procedure is the lumped analysis on which the plotted curves are based. These curves
approach a gravitational admittance of Z = 0-92 at zero frequency. The reliability of
this limit is about the same as that of the estimate at 1c/m, namely 4-0-24 at the 959,

N,

M,
S,
K,
2 ¢ L, T,
A

I| || 2 ¥ I
I - I I II-I -|II 1. -I
o « o « o « o o & & o & o
- °o o - - ~ N oo - . <« =

~ ~ o~ N N ~ o~ ~

2N,

o o
oo

o ~
R
~ o~

| ﬁnuuununuuuunuuinnuunnﬂnﬂn|ﬂ|ﬂﬂuﬂnﬂﬂﬂﬂililﬂﬂﬂﬂﬂﬂﬂﬂﬂ il ﬂhﬂﬂﬂﬂﬂﬂﬂﬂnnuluunununnﬂnnnﬂui 1

1.8 1.85 1.9 1.95 20 2.05

cycles/day

Ficure 4. Honolulu tide spectra at 1 cfy resolution for the semidiurnal spherical harmonic P2,

energy density (log,, cm?(c/d)~!)
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confidence level. The corresponding static limit in terms of the customary Love number
notation 1s 14-k—h = 14029 —0-59 = 0-70,

Clusps in the continuum are more prominent at the present resolution, particularly those
centred on M,, S, and K,.T Significant departures from the smoothed admittance (as
produced by the lumped analysis) can be associated with pairs of constituents separated by
2c/y (declinational splitting); for example, between (2 —2  0) and (2 —2 +2), and
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Ficure 5. Honolulu tide spectra at 1/37 c/y resolution for the lowest frequencies in spherical harmonic
PJ. The ‘Doodson’ numbers in the upper panel refer to (k; k, k5 k, k5) in equation (2-8). The
lower panels show sea energy for the periods 1905-14 to 1942-14 and 1920-86 to 1957-86
respectively. A plot of mean sea level covering both periods is shown in figure 6.

between (2 —1 0) and (2 —1 +2). Presumably this ‘jitter’ in the admittance is due to
triple interactions caused by friction. The effects of cusp and jitter on the overall results of
the present study are slight, but they are worthy of further consideration (§9).

The admittance points for the K constituent are those derived from the nodal modula-
tions. The small anomaly in the admittance for P, is an indication of radiation effects; the
anomaly could be removed by the method of multiple inputs. Other indications of radiation
are the prominent noncoherent residuals of S; and §,. It is interesting to note that the phase

1 The weak K, cusp appears to be centred on §; because the radiational contributions have not been
eliminated at this stage.
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lead at S, is slightly larger than that at M,, making Honolulu one of the relatively rare places
(even among oceanic islands) where the ‘age of the tide’ is not positive.

(d) The spectrum at nodal resolution

Figure 5 was derived from two overlapping 37y records, and represents the highest
spectral resolution we attempted.T We show only the results for species 0. Each column has
one degree of freedom, as opposed at 19 in figures 2 to 4, and 247 in figure 1. The noise level
at the low frequencies is too great for any of the tidal lines to stand out except the (mainly
radiational) annual and semi-annual constituents. Three adjoining lines centred at 0-85 c/y
are probably associated with the 14 month ‘pole-tide’ due to the wobble of the Earth

mean sea level (cm)

1 11 | ) 1 | | 1 1 1 1 ] 1 | |
1910 1920 1930 1940

1 | | | I 1 1

L
1950

Ficure 6. Honolulu ‘mean’ sea level, with frequencies above 2 c/y attenuated.

(Haubrich & Munk1959), but their energy can scarcely be said torise convincingly above the
continuum. Even the prominent 186y ‘nodal tide’, N, is indistinguishable. The dominance
of the low-frequency noise is also clear from the smoothed sea-level record plotted in figure 6.
Variations with a time scale of decades are principally due to winds and pressure, to changes
in sea temperature, to global changes in sea level associated with the melting of glaciers and
ice caps, and to the up-and-down movement of continental blocks.

(¢) The spectrum for gravitational harmonics of degree 3

The stronger lines in a%'(¢) are separated from those in a%'(¢) by multiples of the perigee
frequency f, and nodal frequency f; (see Doodson’s 1921 schedules). In an analysis for tides
of degree 2 over 19 x 355 days = 2-087 perigee cycles = 0-992 nodal cycles, the relative
phase v, of third degree tides pass uniformly through nearly integral multiples of 27. Conse-
quently, the energies of P¥* and P are separable; in the analysis for P, the P7 tides appear
as noncoherent energy.

Spectra and admittance points in figure 7 have been obtained by sequential analysis,
admittance curves by lumped analysis. The energy of Py is generally four orders of

T As a matter of minor interest, the line at (0 0 1 —1 0) is not included in Doodson’s 1921 schedules,
though above his threshold level. This is the only such case we have found.
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magnitude below that of P#, but there are significant third-degree contributions to
groups (1 0) and (2 +1), and predominant contributions to the ter-diurnal species. Apart
from the low-frequency harmonics there was sufficient coherent energy to yield plausible

§nc‘°/ | |‘|!|' |'I§lr |||
it oo
T T—

complex
admittance

amplitude

and p}iase
A&
=
zz
-
At |

i L
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cycles/day
Ficure 7. Honolulu tide spectra at 1 c/m resolution for spherical harmonics of degree 3. The

display is analogous to that in figure 1, except that degree 2 tides have been removed from the
sea energy.

estimates of admittance. It is interesting to note that these admittances are quite different
in magnitude and general shape from the second-degree admittances. Therefore, there is no
justification in the customary procedure to allow for third-degree harmonics by combining


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TIDAL SPECTROSCOPY AND PREDICTION 557

them with second-degree harmonics in the same proportion and phase as they occur in the
equilibrium tide.

One is tempted to ascribe the relatively large noncoherent energy in group (3 1) to
shallow-water interaction between diurnal and semidiurnal tides. But such an effect must
be dominated by the MK line (due to interaction between K, and M,); yet the sea-level
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Ficure 8. Honolulu radiational tide spectra at c/y resolution for spherical harmonics of degrees 1
(left portion of split columns) and degree 2 (right portions). The upper panel shows the
energy of the radiational potential at Honolulu relative to 10~7 unit. For species 0 and 1
numerical values of the admittance (assumed constant) are entered. Circles in parentheses for
species 2 have confidence limits too wide to be reliably computed.

spectra at c/y resolution (not reproduced here) show the energy of MK to be about the same
as its neighbours. At any rate, a quite trivial amount of energy is involved. Sea-level energy
hardly rises in the 4 ¢/d zone. All these results confirm that bilinear interaction at Honolulu
is unimportant.

67 VoL. 259. A.
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(f) Radiational tides

Upon subtraction of all gravitational inputs of degrees 2 and 3 we are left with residuals
that can be examined for radiational effects. For input functions we use «(¢) U?(0, 1) where
am(t) is the fractional variation in radiation (appendix A). The results of such an analysis in
the solar groups (0 0), (1 1) and (2 2) is shown in figure 8. The radiational analysis is
complicated by the existence of harmonics of degree 1 (these are absent from the gravita-
tional potential). It is seen from the top panel that the radiational inputs of degree 1 are
relatively strong for Sa and §; in comparison, the gravitational input into Sa and S, is
relatively weak. Radiational spectra of degree 2 resemble the solar gravitational
spectra.

Radiational harmonics of degrees 1 and 2 contain precisely the same frequencies (of the
form %, c/d+%;c/y). The two admittances have been separated by the method of multiple
components assuming constant admittances within groups (0 0) and (1 1). Values are
given in the bottom panel. Radiational effects are seen to account for significant amounts of
energy at 1 and 2c/y. Results in the diurnal range are confused, possibly because of inac-
curacies in thesubtraction of the gravitational effects, but the coherent energyis considerable,
particularly at 1 c/d where the gravitational input is trivial.

Individual admittances were computed for a radiational input PZ. There is no input of
degree 1, and the only other possible input is a radiational P}, which appears to be negligible
(though not so insignificant as the gravitational P3). Admittances for four constituents are
plotted, but some may be unreliable, and a constant admittance derived for S, would
probably be a fair representation.

The radiational sea-level energy at 2c/d may be represented as a wave of 1-8cm
amplitude with maximum occurring 6h 25 min after the Sun’s transit (i.e. a phase lead of
2-93rad). The §, atmospheric pressure tide in the tropics has a maximum close to 10h,
and a minimum 4 h after transit. Therefore, the radiational ocean tide at Honolulu lags the
inverse barometer effect of the atmospheric tide by 2 h 25 min, or 1-26 rad. This is reasonably
close to the observed phase lag of 1:38 rad. for the S, gravitational tide, suggesting that
the ocean responds to the atmospheric pressure wave in much the same way. At the same
time there must be direct radiational effects on the oceans, for the pressure amplitude in the
tropics is 1:2mb, and the gravitational admittance is only 0-62. The response to the atmo-
spheric S, tide must not be confused with the response of sea level to random pressure varia-
tions at 2 c/d, for these have much larger spatial wavenumbers, and little spatial coherence.
According to Munk & Bullard (1963) the sea-level response to the random variations
is quasi-static. .

6. PREDICTION VARIANCE
(a) Tidal predictions

Table 1 summarizes the observed, predicted, and residual variances of Honolulu sea level
{(#). Convolutions of species 0 were computed from a 19y 12-hourly series derived by low-
passing {(#) with 0-5 c/d cutoff. Other species refer to the 19 x 355 d of 3-hourly series men-
tioned previously. The first row for each species shows the results for a response method
with a maximum number of input variables; subsequent rows are for optimum predictions
when certain variables are successively dropped. Weights corresponding to the top line for
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each species in table 1 are listed in table 2. The lumped analysis leading to the smooth
admittance curves refer to these weights.
In species 0, the radiational potentials marked with a prime are

of (1) = (365-242/2m) [af(¢+3) —“?(t~%—")],}
of'(t) = (365-242/4m) [a§(¢+3) —ad(t—39)].

and
species :
m method
0 response
harmonic
1 response
harmonic
2 response
harmonic
3 response
total} response
response
harmonic

TaBLE 1. HONOLULU PREDICTION VARIANCES FOR 1938-1957

variablest

0 0 0
as (09 * 1)’ 58] “(1) s Oy

174
Og

As above, without a3 (+1)

0 00 40 07
%y, Oy 5 gy Ay
0 0/
oy, %y
Sa, Ssa

(0, £1, £2, +3), c} (Oj'__ 1), x1, x5 gc&

As above, without x1, x3, .c3

(0, £1, £2)

20,9,p,0,M, P, S, K, 7,00
c3(0, £1, £2, +3), 3 (0, £1),x3, .3

As above, without &.c3

3 (0, £1, +2, +3),c3 (0, +1)
As above, without ¢3 (1)

3 (0, £1, £2)

2N, 1, N, v, M, L, §, K

c§ (0, 1)

o

all variables listed above

minimum number of variables listed above

minimum number of variables

no.'of
station
constants
7
5
4
2
4
26
20
10
20
24
22
20
16
10
16
6
2
63
24
40

(61)
variances (cm?)
A
[ N\
observedf predicted residual ratio
N o Oin. i <Em
23-16 10-20 12-96 0-560
— 10-02 13-14 0-567
— 9-64 13-52 0-584
—_ 8-59 14-57 0-629
— 872 14-44 0-624
154-78 154-70 0-08 0-0005
—_ 154-63 0-156 0-0010
—_ 154-61 0-17 0-0011
—_— 154-38 0-40 0-0026
157-63 157-50 0-13 0-0008
—_ 157-40 0-23 0-0015
— 15737 0-26 0-:0016
—_ 157-35 0-28 0-0018
— 157-30 0-33 0-0021
—_ 157-11 0-52 0-0033
0-061 0-008 0-053 0-87
— 0-008 0-053 0-87
355-19 322-41 32-78 0-0923
-— 320-51 34-68 0-0976
— 320-21 34-98 0-0985

1 For example, ¢} (0, + 1) designates the six variables aj (¢ —A7), a (), a3 (¢-+ A7) bj (¢— A7), b3 (), b3 (¢4 A7). Inall cases AT = 2 d. Variables
without parentheses were used with unlagged ¢ only. x7 refers to the radiational potentials o+ 15y
1 The ‘observed variances’ are the energies of {(¢) in the frequency ranges (0 to 4 c/m) (1 ¢/ld +4 c/m), (2 ¢/ld+4 ¢/m), (3 ¢/ld+2 c/m),
respectively. The total’ observed variance is the overall variance of the lowpassed series {(t), including inter-tidal noise.

variable
0
a;

|

OFNW O O HOm ©

0
ay
0
2%
1
2

X1
Xz
&el

| 1
ot O et QO DD

0
0 —0-69386
0

U

—0-163524
0-078005
—0-089109

—4:94637
—11-99387

0-015010
—0-035527
0-229742
0-067604
—0-037543
0-056136
—0-018781

—0-402419
0-394974
—0-150418

0-15069

—0-00314

t For the zonal radiational harmonics, v, refers to af’, a)’, equation (5-1).

TasLE 2. HONOLULU WEIGHTS

—8-87672t
—13-50501+

0-035523
—0-072475
0-101201
—0-499019
0-218337
—0-094427
0-017824

0-202837
~0-254192
0-107273

—0-09649
1-58026
—0-00005

variable s

% 3
2

1

0

-1

-2

-3

¢2 1
0

-1

X3 0
Zc% 0
3 1
0

-1

u&
—0-032468
—0-238275

0-728548
~0-505637
—0-004338

0-326582
—0-140442

—0-5633411
0-141800
0-264934

—1-98122

—0-00023
0-007453

—0-101228
0-053084

Vs

—0-050293
0-292670
—0-014861
—0-853476
0-850862
—0-381108
0-033328

—0-640720
0729601
—0-092149

—1-36855
—0-00102

—0-240591
0-127434
0-027965

6%-2
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Since «f and af are almost periodic functions at 1 c/y and 2 c/y respectively (see their spectra
in figure 8), the functions defined in (6-1) are approximately their time-derivatives. They
are included to accommodate fairly large phase lags arising from thermal inertia, which,
unlike gravitational inertia, is important even at such low frequencies. We could have used
instead terms like af(¢—91¢) but such a large time lag is awkward to handle.

In the frequency band 0 to 4 c¢/m (strictly 15 c/y to 4 ¢/m) we must expect a large prediction
error from the high noise level. In fact, the residual variance is 56 9%, of the observed variance.
Without any gravitational inputs the residual is 63 9,, and so from a point of view of prac-
tical prediction the gravitational terms are hardly worth keeping.

The constants used for harmonic prediction were taken from International Hydrographic
Bureau Special Publication no. 26, sheet 649. They were derived from 4 years of sea-level
records except for Sa and Ssa, which were derived from 30 years of monthly mean levels.
Harmonic prediction based on Sz and Ssa (hence four-station constantst) gives a residual
error of 14-4 cm? The response method with the same number of station constants gives
13-5 cm?; with seven constants it gives 13-0 cm? and with two constants 14:6 cm2. So the
response prediction does about as well as harmonic prediction with half the station constants,
but neither method does very well.

In species 1 and 2 the advantage of the response method is more pronounced, but now
both methods do very well. For species 1 the harmonic method with 20 station constants
has a residual of 0-4 cm? as compared to the observed variance 154-8 cm?; the response
method with half the station constants has half the residual variance.}

The variables {cf' are nonlinear terms to study the interaction between the leading
gravitational potential and low-frequency (< 0-5c/d) sea level.§ In this manner we had
hoped to account for the cusp energies of order 0-1 cm? at K, and 1 cm? at M, (figures 3
and 4). In fact the cusp energies were not significantly reduced (see § 9 for further discussion).
The input {¢* could serve also to predict the result of line-line interactions such as Ssa —M,,
but these are negligible anyway.

The reduction in ¢f* when a term is excluded is not necessarily a good test of its im-
portance. For example, the weights derived for the radiational potential ¥3 (u, = —1-98,
v9 = —1:37), when multiplied by the appropriate latitude factor, agree very well with the
radiational energy of about 1-6 cm? deduced from the sequential analysis (§5). The fact
that its omission causes 03 to fall by as little as 0-03 cm?is due to a readjustment of the weights
of the gravitational terms to compensate for the absence of 3. In effect the estimate of
gravitational admittance becomes distorted in the solar frequency group to allow partially
for the apparent anomaly. This self-compensation for faulty (or incomplete) input functions
does not apply to cusps since these occupy largely non-tidal parts of the spectrum.

The response to species 3 is ineffective in prediction because the energy of the ter-diurnal

T Constants for Mm and Mf are not given in the published list, but they would be unlikely to improve the
harmonic prediction any more than o does in the response prediction.

1 This advantage applies even though we used a program (devised by G. W. Groves) which infers some
harmonic constants, not actually supplied, from strong neighbouring lines. Thus, our harmonic prediction
involves more terms than are quoted in table 1.

§ For the purpose of computing tide prediction tables, the use of recorded sea level 2(15) among the input
functions would of course be ruled out.
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tides is very small as compared with the continuum energy (which is itself very low). No
ter-diurnal harmonic constants are given in the published list.

In assessing the overall prediction variances at the bottom of table 1, we have to remember
that the total variance of {(¢) contains also the energy between the bands of tidal frequency,
especially in the range between species 0 and 1. Also, the efficiency of the diurnal and semi-
diurnal predictions are to some extent marred by the inefficiency at species 0. The noise
level at Honolulu is less than in places which experience stronger weather. Yet compared to
the exceptionally low tides the noise level is rather high, so that the residual ratio, about 9 %,
for the response, 10 9%, for harmonic predictions, is higher than the corresponding ratio for
typical ports.

(b) Self prediction

We now consider the variation in sea level after removal of all tidal effects. The variance
of the residual ‘sea level’ in the frequency band 0 to 0-5 ¢/d is 26-6 cm?2. Imperfections in the
removal of gravitational and radiational components are negligible as compared to this
residual, and any significant improvement in prediction must depend on some means of
predicting the residual.

Two procedures (and their combination) suggest themselves: (i) toinclude some meteor-
ological variables ¢,(#) as additional input functions into the prediction formulae (see §10);
and (ii) to make use of the past tide record itself as an input.

Figures 9 and 10 show the power spectrum and auto-covariance of the residual sea level
at Honolulu. Nearly all the contribution to the variance comes from frequencies below
12 ¢/y and, accordingly, the auto-covariance remains large for lags up to 1 month. With this
degree of persistence one expects useful self-predictions for periods up to 1 month.

For a prediction 7, days in advance we may write

& = Sl

with the prediction weights, w,, to be determined by the condition that the residual variance
be a minimum. The problem is closely analogous to prediction using the tide potential as
input function, except that in the present case the input is the (real) process {(¢) itself, and
that only its past values are permissible.

The results are shown in figure 9. The series analysed consisted of residual {(¢) sampled at
1 d intervals over a period of 19 y. For any given prediction time of 7, days, we chose the lags
7,, 1:257, 1-507, in one model, and a single lag 7, in a second model. The improvement of
the triple lag model over the single lag model is surprisingly small. (Prediction with
7, 1-507,, 27 led to the same conclusion.) The result is reminiscent of a Markov sequence
for which optimum prediction is based only on the most recent observed value, a knowledge
of values at earlier times being of no use whatsoever in improving the prediction.

We have also attempted to fit the observed spectrum and covariance by a class of functions
which includes the Markov process as a special case. The best fit was obtained for the
Markovian case. Apparently the prediction of residual sea level, as so many geophysical
processes, is possible only in this limited sense.

For the single lag model the predicted sea level is

f(t) = W g(t“ Ts) ’ (6.2)
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Freure 9. Auto-covariance curve for Honolulu sea level after removal of energy above } c¢/d and of
low-frequency gravitational and radiational tides. The lower curves are the self-predicted
variances, o2, as functions of the prediction time 7, for a single lag 7, and for the three lags
7., 1-257,, 1-507,, respectively.

104 -

cycles/year

Ficure 10. Power spectrum of the residual (tide-free) Honolulu sea level from 1938 to 1957.
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C ! g t_Ts
where w, = <—-—(—%€—2((7)~>——)) (6-3)

is the auto-correlation. The associated variances are:

observed predicted  residual  residual/ observed} (6-4)

% wi(f?  (1—w) () 1—u3

Self-prediction 14 days in advance reduces the variance from 26-6 cm? to half this value.
For 1 month the reduction is small, from 26-6 cm? to 26:6—7-6 = 19 cm?, and for 1 year the
reduction is utterly negligible. Self-prediction is then of no use in improving published
Honolulu tide tables. But it is conceivable that records from digital tide gauges can be
removed on (say) 24 January, promptly analysed to give ‘improved February tide’ pre-
dictions, and be distributed prior to 1 February to interested parties. Whether this is
worthwhile is an operational question.

So far we have dealt with the prediction of instantaneous sea level 7, days in advance.
A prediction of the mean monthly or mean annual sea level can of course be given with
greater precision, because smoothing reduces the high-frequency components of the
spectrum and extends the covariance to larger lags. Smoothing times and prediction times
are independent variables; in the special case that these are equal (e.g. monthly means
predicted 1 month ahead) we have, for a smoothed Markov process,

— __ 2sinh’ (3y7,) €777
$ YT e s —1

=1—%y7.+ ...

as compared to w, = e~77s for the unsmoothed process (Munk 1960). The prediction time
is lengthened by only 50 %, for the smoothed process.

7. NONLINEAR PERTURBATIONS

It is well known that nonlinear effects, particularly those associated with shallow water,
can lead to significant distortions of the tidal profile. The departure from linearity varies
greatly from place to place, from a small perturbation as at San Francisco to a near-bore
condition as at Avonmouth. Accordingly we may divide ports into three classes, depending
on whether:

(1) tides are virtually linear;
(i1) tides are analysable by perturbations up to second or third order;
(iii) perturbations are divergent or otherwise unmanageable.

Honolulu typifies (i) ; we now consider category (ii), with Newlyn as example. Category (iii)
is outside the scope of this paper, but we shall comment in § 10.

Nonlinear interactions are accommodated in harmonic prediction by allowing consti-
tuents at sums and differences of the frequencies of the main linear constituents. However,
the number of additional constituents so required increases rapidly with increasing non-
linearity, (even when allowing for multiple nonlinear constituents; e.g. those whose
frequencies coincide with linear constituents), and the f, # modulating scheme becomes
inaccurate. Perturbations to the response method are better manageable.
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The bilinear prediction can be written
{n() = 2.2, Wi Gt Tg) + 22 W0 6t —T) € (E—7), (7-1)
ij s

where ¢;(#) represents the complex linear input functions for any m, n, whether gravitational,
radiational or otherwise. In the double summation, the product ¢,(t—7,) ¢;(¢—7,) can be

Ry

of various types: (i) first order predictions: Gt—r) 8(t—1,);

(ii) various linear inputs: ¢;(t— Ts) ¢(t—1¢);5

(iii) recorded and linear inputs: {(¢—7,) ¢;(¢—7,).
In procedure (i) we first evaluate w,, to obtain the linear prediction {!(#) according to (4-17).
In a second step, {(#) serves as input function into (7-1), and the linear weight w;, are re-
evaluated together with w,;,, in a combined linear-nonlinear matrix inversion.t This
procedure has the advantage that linear modifications of the tides are already allowed for
in the bilinear input functions, and accordingly the biadmittances can be expected to be
smoother than for (ii), and require fewer bilags. For (ii) the biweights have to absorb both
linear and quadratic effects, but there is the advantage that linear and nonlinear weights
are evaluated in a single step. (iii) is useful for research on nonlinear interactions; as a
predictor it is limited to the smallest value of 7.

Whichever of the foregoing schemes is adopted, the bilinear input can be written as a

(complex) product of ¢f*(#) and ¢ (¢), representing various (complex) linear functions
belonging to species m and m’, with m = m’. We use

m+m' __ am m m—m' . m m'E .
M = gre™, ol = cJ"c} (7-2)

for a shorthand notation to designate overtides of species m+m’. The associated bi-
admittances are given by the two-dimensional Fourier transforms

s &

Z(Sf) = 3 3 w,exp[—2mi(fr, 4 f7,)], (73
At the discrete frequencies /= r/355¢c/d, f" = '/355c/d, the foregoing expression equals
precisely the estimate Z.—H, GG,

derived from the one-dimensional Fourier transforms H, .G, G, of (" ¢m v,
respectively.

Trilinear convolutions can be dealt with by an extension of the foregoing analysis. We
used only the unlagged complex interaction {' = {!{f*({1)* between species 2 predictions.

8. REsurLts FOR NEWLYN

(a) Procedure and choice of variables

The following discussion deals with linear as well as nonlinear interactions. Newlyn
(6 =39°54", A =—5°34") is a typical example of nonlinear category (ii). While better
exposed to the North Atlantic Ocean than most European ports, it is on a continental shelf
some 300 km wide and typically 100 m deep, and this causes an appreciable but not excessive
amount of shallow-water distortion.

1 The matrix formalism in §4 (g) can readily be adopted to include nonlinear terms.
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We analysed precisely the same 19 x 355-day period as for Honolulu, but in a somewhat
different way. The sequential analysis adopted for Honolulu is less effective here because
of the many multiple components (§ 4 (¢), multiple component (ii)). We therefore carried
through only the lumped analysis, including bilinear and trilinear terms. Choice of non-
linear variables is simplified by the strong dominance of semi-diurnal tides at Newlyn.
Products with m = m’ =1 or 3 can be ignored, so the only inputs we need consider are
272, ¢271, ¢270 and ¢2+272, 21 (2+2 for species 0,1, 2, 3, 4, respectively. The procedure of
solving the weight matrices was as follows. First a smoothed series with 4 c/d cutoff, 8 values
per day, was produced as for Honolulu, and all 19 x 355 days processed to give weights for
species 1, 2 and 3. The convolution on ¢ (with other variables eliminated) gave the first-
order prediction {! for species 2, which served as bilinear inputs ({)2+2 to species 4 and 0.
In the subsequent bilinear analysis for species 0, we used 19y of a twice-daily smoothed
series with 0-5 c/d cutoff; for species 4 we used the original hourly readings of {(¢), but for
only three 355-day periods, at 6y intervals.

The only published list of harmonic constants for Newlyn at present is I.H.B., sheet no. 1,
which is based on only 6 months’ analysis of data in 1915. We consider it an unfair test of the
harmonic prediction to use this list, and therefore computed our own set of harmonic
constants (table 5) from a 710 day record with central date 13 April 1948. Sa and Ssa were
computed from the whole 19y of data.

(b) Prediction variances

Tables 3 and 4 summarize the results of the lumped analysis for Newlyn. The residual
variance in species 0 is much higher than at Honolulu because of the more severe weather at
the higher latitude.

For species 0 we experimented with types (i) and (ii) of bilinear inputs (§7) ; the former
give ({22 and are based on first-order prediction, the latter give a} 2 arising from the
linear input functions. The two types of bilinear input do about equally well. Here it is
remarkable how small the difference-frequency interaction is, of order 1 cm?, as compared
to 100 cm? for the sum-frequencies producing species 4. As another measure of this disparity
we may compare the amplitudes of the harmonic constituents MSf and MS,, namely 1-4
7-4 cm respectively. The disparity can be accounted for by shallow water wave theory (cf.
Lamb, 1932 p. 281). In a perturbation expansion for free waves progressing over a shelf of
constant (shallow) depth #, the first two terms are

Ux, 1) = X, eixs, —_—U(t—»—?—c—«), l

D=2 =N g ~
3 . .

00,) = §50) 2, (B) 53040 (0y 0 exp i+ Hm) -+ 7, =) explil —xH |

(81)

and we should expect the amplitude of MSf to be about (2¢/m)/(4c/d) = 0-02 times that of

MS,. At cfy resolution, MSfis in fact scarcely distinguishable from noise, so its true ampli-

tude may well be much less than 1-4 cm.
For species 1 we included both types (ii) and (iii) of bilinear inputs, ¢3! and {.c}, where {

isthe unlagged recorded sea level low-passed to 0-5 c/d. Neither type contributes appreciable
energy.

68 Vor. 259. A.
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TABLE 3. NEWLYN PREDICTION VARIANCES

variances (cm?)
A

no. of

(e A
species station  observed  predicted residual ratio
m method variablest constants Em o2 0% T2/ <D m
0 response  a (0, +1), «f, af’, o, aY, a3~2 (0, 0), (0, +1) 10 155 20 135 0-871
as above, with (£%)2-2 instead of a3~2 8 — 19 136 0-877
as above, without bilinear terms 7 —_— 18 137 0-865
ol harmonic  Sa, Ssa, MSf, Mf 8 — 16 139 0-897
_ 310, 0), (—1,0), (0, —1), (L, 0), (0, 1) 28 40 38 2 0-050
< A (0, +1, +2) 10 —_ 37 3 0-075
>.¢ >" harmonic see table 5 22 — 37 3 0-075
O = 2 response g (0, £1, +2, +3), & (0, +1), x3, &%, £+ &t (&Y 26 17060 17051 9 0-0005
Qf( E As above, without nonlinear terms 22 — 17029 31 0-0019
25 U 2 (0, £1, +2, +3) 14 — 17020 40 0-0023
I O harmonic see table 5 24 — 17055 5 0-0003
~w 3 response  ¢§ (0, +1), 3+ (0, 0), (&1,0), (0, £1) 16 12 0-7 05 0-42
c§ (0, £1) 6 — 0-6 0-6 0-50
=< ‘£ harmonic M, MK, SK 6 — 0-6 0-6 0-50
%C_) 4 respomse a3 (0,0), (—1, —1), (0, £1), (1, £1) 12 103 102 1 0-01
= (Enz2 2 — 101 2 0-02
o) 2 & g2 2 — 76 27 0-26
8 7)) harmonic MN, M, MS, MK, S 10 _ 100 3 0-03
=|§ total response all variables listed above 92 17400 17212 188 0-011
E = response minimum number of variables listed above 39 — 17177 223 0-013
harmonic all variables listed above 70 —_ 17209 191 0-011

1 The symbolism is the same as in table 1, except for bilinear terms. a%2 (0, 0) (0, + 1) designates the three variables a§~2 (¢, t— A7), a3~2 (t 1),
a32 (t, t+A7). a%~2 without parentheses designates a3=2 (¢, t). ({¥)>~2 represents the difference frequencies of the unlagged complex linear pre-
dictions for species 2.

TABLE 4. NEWLYN WEIGHTS

variable $ U, v, variable s u, v,

a3 1 0-17279 — 3 0-68689  —1-77475

0 —006111 — —17-91864 2-76338

-1 0-19196 — 13-48524 7-19030

o 0 —10-10901  —9-55470 —g"ggi’g —?g‘gggég

7 /} OC/% 0 1‘02773 25‘51777 - 828395 ~4'86726

\ (n2-2 0,0 463x106  — —2:55434  —0-84152

- ¢l 2 0-25529 0-23613 6 0-46432 3-35623

< >~ 1 —047527  —0-37177 357749  —2-78616

8 C 0 0-37520 0-55067 —1-73939 0-25917

25 m s i

1 — 00 5 —{)

= O c} 0 0-05493 1-22219 %‘:AI . 0-00025 0-00017
= O ! 0 —0-22171 0-07908 ¢LE% (6D — 21651070 218 x 107

— o ! A 0-92303 0-76366

o X3 1 0 7-11996 4-56625 —0-64915 —1-30128

32 €.cl 0 —0-00006 0-00012 —0-91930 0-15372

=0 &1 0,0 —0-00355  —0-00328 6t ,0  —0-00035 0-00029

a5 —1,0  0-00153 0-00041 ,0 —0:00025  —0-00011

025 0,—1 0-00047 0-00065 1 000028  —0-00013

84 1,0 —0-00017 0-00229 , 0-00025  —0-00016

= 2 A 0,1 000109  —0-00053 0-00004 0-00022

= = (ghyz+2 0,0 —61x10-% 368x10-5
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For species 2 we used a bilinear term of type {{* and a trilinear term {I{(&)*. The inter-
action ({1 produces cusps of the order of 1 cm?, but these account for only a small fraction of
the recorded cusp energy. Other types of bilinear inputs are inadequate, since a3, a), ...
contribute so little to the low frequency sea level. We note that the trilinear interaction
contributes significantly to the prediction variance, since it drops by 22 cm? when the term
is omitted.

Prediction variance for species 2 is reduced by some 10 cm? by neglecting 3. This is not
a true measure of the semi-diurnal radiation because the gravitational convolution adapts
itself somewhat to the missing input. The weights associated with ¥ represent a 2c/d con-
stituent of 19 cm amplitude lagging the Sun’s transit by 10 h 24 min (5-45 rad). The
equivalent lag on the inverse atmospheric tide is 6 h 24 min = 3-35 rad, and compares
reasonably with that of the ¢ convolution. 19 cm may seem to be remarkably large for a
non-gravitational tide, but bearing in mind that the admittance to the Pj spherical
harmonic is of order 15 at Newlyn, compared with 0-6 at Honolulu (where we got 1-8 cm
radiational S,), we see that it is quite reasonable.

TABLE 5. HARMONIC CONSTANTS USED FOR NEWLYN

constituent H K constituent H K constituent H K
Sa 548 2234 2Q, 0-43 262-1 MNS, 1-09 136-0
Ssa 1-57 1114 o 0-36 268-1 2N, 5-87 097-4
MSf 1-44 158-1 Q, 0-91 291-9 o 516 159-5
Mf 1-35 223-3 P 0-45 307-1 N, 32:21 103-3
M, 0-97 006-0 0, 5-29 3391 v, 792 098-1
MK, 0-67 2742 M, 0:33 319-0 M, 171-05 123-2
SK, 0-18 070-0 m 0-33 099-5 A, 375 117-2
MN, 4-20 1174 P, 2-39 097-0 L, 8:03 131-8
M, 10-28 145-1 S 0-23 0144 T, 301 159:6
MS, 7-37 1981 K, 6-45 103-6 S, 5776 165-9
MK, 226 204-1 Ji 0-22 075-3 K, 16-78 163-3
Sy 1-03 2597 —_ — — 28M, 2-09 007-5

H (cm) and « (degrees) are in the conventional notation.

For species 4 we note that a bilinear input ({')2+2 gives almost as large a predicted variance
with unlagged ¢ as ¢372 with 6 lag-pairs, and does considerably better than ¢§*2(0, 0) alone.
This is because the linear admittance for species 2 is rather irregular, and so its product
cannot be well simulated with just one lag pair. For the unlagged weight, arg w is close to
the value {7 suggested by (1). Assuming 300 km for the shelf width x, then |w| is consistent
with a uniform depth of 42 m. The true mean depth is about 100 m, but the negative power
of zin (1) will give greater weight to the shallower parts of the shelf.

We see from table 5 that the neighbouring constituents 2V, and x, differ in phase by 62°,
presumably due to the multiple components 2N, and 2MK,, u, and 2MS, (but a jitter
(§5(c)) may be partly responsible). Since 2N, and y, differ in frequency by only 2c/y, our
smoothed admittances cannot adapt to such rapid changes, and so they become inaccurate
for both constituents, unless the triple interaction terms are included.

In all species except 2, predictions by the response method are slightly better than by the
harmonic method, even with a lesser number of constants.

With regard to the overall picture, we note that at Newlyn the energy of the low frequency

68-2
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residual is five times that at Honolulu, and the tidal energy fifty times as large. As a
result the overall residual ratios are less at Newlyn than Honolulu, 1 %, as compared with
109,

On subtracting low frequency tidal effects from the low-passed {(#) with cut-offat 0-5c/d
we obtained a residual series with variance 148 cm?. Autocovariances and self-prediction
variances for this series are shown in figure 11. The persistence is less at Newlyn because of
the larger contribution by ‘weather’ to the continuum at 0-1 to 0-2 ¢/d (cf. figure 12, panel 5
with figure 1, panel 3). Consequently, the self-predicted variance for Newlyn falls off much
more rapidly with prediction time and is negligible for a 10 day prediction.

SO YOTAL VARIANCE

ll/,.l.,_\lf\l/\l

20 40 60 80 100

!
6
7 (

Ficure 11. Auto-covariance and self-prediction curves for Newlyn. Description as in figure 9.

days)

(¢) Spectral composition and admittances

The spectrum of three linear inputs was multiplied by the squared admittance corre-
sponding to the response weights to give the output spectra in the top three panels of
figure 12. Bispectra were computed and multiplied by the appropriate biadmittance, and
the mean energies plotted in the fourth panel. The fifth panel is very similar to the third
panels of figures 1 and 7, except that the residual energy is the mean energy of {(¢) after
subtraction of the vector sum of all four components shown above. All ensemble averages
are over 19y and 13 adjacent c¢/y harmonics.

The diagram does not allow for triple interactions, as these were computed at a later
stage. Occasional bumps in the lesser groups of species 2, as well as irregularities in the P
admittances were removed when we allowed for triple interactions. Cusp-type residuals
are conspicuous at species 2 and 4.

All the linear admittances to gravitational inputs are plotted in the bottom diagrams.
P} was allowed only unlagged £, so the equivalent constant admittance is printed. The
admittance curves for P; and P§ are noticeably more wiggly than the corresponding curves
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Ficure 12. Newlyn tide spectra at 1 ¢c/m resolution. The top four panels represent the sea spectrum
due to (1) gravitational tides, degree 2, (2) gravitational tides, degree 3, (3) radiational tides,
and (4) bilinear interaction. In the fifth panel, the total height of each column represents the
observed sea spectrum, and the lower (unfilled) portion is the residual energy when the four
components above have been subtracted. The lowest diagrams show the linear gravitational
admittance functions derived from the response weights. Dashed curves are imaginary admit-
tances, phase leads are in radians.

energy density (log;, cm? (c/d)!)
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for Honolulu. The steep decrease of phase for P}, about 34 rad (¢/d), is remarkable. It implies
that a smoother admittance would be obtained by using ¢ (¢—59) instead of ¢}(z).

The isolated peak at (2 1) followed by a trough at the solar group (2 2) is reflected in the
unusually large L, constituent and the fact that the radiational term accounts for a fair
proportion of the S, constituent. (The true gravitational S, has amplitude 79 cm and phase
—146°). It might be suspected that the trough at (2 2) is an analytical defect, allowing
x5 to contribute too much to the group. That this is not so was proved by estimating the
gravitational admittance directly from the purely lunar lines such as (2 2 0 0 1), which
were also used for Honolulu. The resulting admittance

X=——123, Y=—39, |Z] =129, arg(Z)——283
compares favourably with the values
X=-130, Y=-50, |Z]|=144, arg(Z)=-—282

from the admittance curve in figure 12 at the frequency of (2 2 0).

It is interesting to note that the admittances to P3 and P% are, like the admittances to P3,
of order 10 in magnitude, even though their resulting energies are still very small. This, and
the enhanced radiational effects, are presumably due to local shelf resonances in the range
2 to 3c/d.

9. JITTER AND CUSPS

The derivation of the port admittances now provides a challenge for interpreting these
in terms of tidal dynamics and offshore topography. For Newlyn the admittances are sur-
prisingly complex. At Honolulu the admittances are reasonably smooth, particularly when
viewed at c/y resolution. But even then there appears to be a significant ‘jitter’ between
values separated by 2c/y. All tests to account for this in terms of bilinear interactions have
failed, as also consideration of higher order terms in the lunar orbit theory, spherical
harmonics of degree 3, Earth’s oblateness, and statistical sampling.

The following hypothesis for jitter has occurred to us, and will require further study. The
bottom drag on tidal currents, and the mechanism of the tide gauge? are associated with
frictional effects of the form ¢ |§ | which, being an odd function of ¢, will produce trilinear
interactions without bilinear effects. Triple interactions between each strong line with P,
and K, or with M, and §,, will modify the weak constituents at 2 c/y separation, as observed.
As supporting evidence, figure 4 shows a bump in the sea-level spectrum at (2 4 —4),
corresponding to the trilinear constituent 25M,. Subsequent trilinear analysis for Newlyn
did in fact lead to a significant reduction in residual variance, and this strongly implies a
corresponding reduction in jitter.

At Honolulu and Newlyn the continuum spectrum was found to rise sharply in the
vicinity of the strong lines. The simplest explanation is the one proposed by Munk et al.
(1965), that the cusps represent the sidebands due to the modulation of a carrier (the tides)
by a low-frequency noise (the continuum at very low frequencies). Accordingly we expected
significant bilinear coherences for the noise-line interaction {¢. The computed bilinear
coherences were insignificant. We have considered and rejected three possible explanations.

1 This raises an interesting problem concerning optimum prediction of sea level as opposed to water level
in the tide well.
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(1) The cusp is merely a result of some numerical defect in the computing procedure. We generated an
an artificial series of 355 days, consisting of a harmonic tide prediction plus a random
‘noise’ with the appropriate low-frequency enhancement. All dimensions corresponded
roughly to the sea spectrum at Honolulu. The artificial record was analysed in the same
manner as the Honolulu record. The noncoherent energy is virtually uniform in the neigh-
bourhood of the strong tidal lines.

(ii) The cusp energy is due to nonlinearity in the tide gauge itself, as a result of clock errors or
octopus tentacles in the orifice, etc. A year’s record from a precision bottom-placed pressure
recorder at La Jolla (Snodgrass 1964) yielded a cusp centred on group (2 0) of about 1 cm?
energy, very much as at Honolulu.

(iii) The cusp is due to global, rather than local, interaction, so that there is no relation between
the cusps and the locally recorded continuum near zero frequency. But then there should
still be relations between cusps at two adjoining stations, and between the two sides of a
cusp at a single station. We isolated the cusp spectra at c/y resolution from 7y of simul-
taneous tide records at Honolulu and Kahalui (an island port about 100 km southeast of
Honolulu), and computed cross-spectra and coherences. The energy of the cusp at Kahalui
is about half that at Honolulu, although the tidal amplitudes are about the same. The cross-
spectra at c/y resolution bear no uniform relation, and the coherence from ensemble
averages extending over 7 record years and 19 neighbouring c/y harmonics centred on A,
is practically zero. Since the separation of the ports is a small fraction of a tidal wavelength,
we should expect high coherence under hypothesis (iii). In another test we examined
separately the left and right sides of the cusp about M, at Hawaii. Upon demodulation,
each the side bands was expected to carry approximately the same information. The test
was negative.

At this time we have no convincing model. Toshitsugu Sakou & Gordon Groves (personal
communication) have made the interesting suggestion that the cusp energy represents the
small surface oscillations associated with internal tides; the spreading into cusps is to be
associated with a modulation of the internal tides by the slowly varying thermal structure.

10. FURTHER REMARKS CONCERNING PREDICTION

Ultimately the prediction scheme for a given port must depend upon the relative contri-
bution from ‘noisy’ processes (processes with a continuous spectrum) and from nonlinear
processes.

For noisy processes one is limited to skor¢ range predictions, depending on persistence. The
prediction times might be of the following order: storm tides, 1 day; changes in level due
to river runoff, 1 week; ‘mean’ sea level, 1 month. The appropriate formalism is

L) = SZwe(t—,) (10-1)

where the 7 input processes ¢;(#) may include atmospheric pressure and wind at strategic
locations, sea level at various ports (including the port in question, see § 6 4 on self prediction),
etc. The weights w;; are determined from past records by matrix inversion (§4 (g)). The
problem is complicated by the fact that the input functions will in general be partially
coherent with one another. Thus, the optimum weights w,; associated with any particular
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input process will depend on what other processes are included. But all this can be sorted
out. The principal task for a good short-range prediction of storm tides will be the establish-
ment of a communications network to supply the appropriate input functionsinto a computer
for ‘real time’ processing and prediction.

With regard to nonlinearity we have considered the cases of (i) Honolulu, linear pre-
diction adequate; (i1) Newlyn, prediction should allow for bilinear and trilinear interactions;
(111) wildly nonlinear stations. For the last case, we plan to develop the response method to
a high-order perturbation. We are also considering a method involving the concept of an
‘equivalent deep-water port’, a fictitious station so defined as to have tides identical with
the actual port if nonlinear processes were lacking. The transformation from the predicted
equivalent tide (¢) to the predicted actual tide f(t) is afforded by introducing delay and
distortion terms: f(t) — afe(t_T), (10-2)
with « and 7 functions nof of frequency, but of elevation () (as in the method of charac-
teristics). The proposed development carries a step further the central concept of this paper:
to replace the harmonic by a response scheme which avoids considerations of the splitting
of each species into a spectral cluster. Here we propose to avoid even the decomposition into
species as far as the nonlinear effects are concerned, with the assumption that the propaga-
tion of a tide across a shallow shelf depends only on the instantaneous elevation of water
level at the outer edge.

Severe noisiness and nonlinearity tend to go together in shallow water ports, and one may
contemplate a combination of the schemes sketched in this section. Butit is by no means clear
whether an iterative scheme can be devised which converges to a separation of linear from
nonlinear effects. One may have to resort to off-shore measurements of tides, predict these,
and allow for nonlinearity by direct comparison of offshore and onshore tides. Concerning
such efforts, it seems appropriate to close with the remarks of Hilaire Belloc (1925) * When
they pontificate on the tides it does no great harm, for the sailorman cares nothing for their
theories, but goes by real knowledge.’

This study has been generously supported by the U.S. Coast and Geodetic Survey, and by
the National Science Foundation. The Honolulu and Newlyn observations have been made
available through the efforts of Mr B. Zetler and Dr J. Rossiter, respectively.

AprPENDIX A. DERIVATION OF INPUT FUNGTIONS
(a) Gravitational potential

The gravitational potential resulting from a mass M (( or ©) at a test point P(r,8,2) is
V = GM|/p, where G is the gravitational constant, and p the distance PM. Expanding in
terms of the parallax £ = /R, we have (figure 13):

GM GM GM &
V== Z"R‘“[1“2§ﬂ+§2]_%:7§“ 2 &8P (1), (A1)
/9 n=0
where g = cosa, and P,(u) :2—:72—'&(%(#2_1)n

are the Legendre polynomials:
Po=1, Pi=p, Py=3p"—

| S

s P3:

ojen

1“3 - %ﬂ:
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The first term, # = 0 is a constant of no interest. The second term, (GM/R?) r cos a, repre-
sents a uniform force GM/R? in the direction O to M on all points of the Earth; this enters
in the Kepler-Newtonian equations for orbital motion and is not part of the tidal effect.

ZENITH

Fieure 13. o is the zenith angle of M (Moon or Sun) at a point P on the Earth’s surface. Z is the
polar angle and L the terrestrial east longitude of M. 6, A are polar angle (colatitude) and
longitude of P. r = OP is the distance from the Earth’s centre to P, and R = OM the distance
to M, p = PM the distance from P to M.

Now write G = ga?/M, where a is the Earth’s radius and M, its mass. The equilibrium
tide can be written

vV M 2 . d (E)"“ M

— = Qi nt1P (1) = K\5) P, K,=ai-&", A2
can, S eRw = 3 K(G) RW, K=ap (A2)
where £ = (a/R). For the Moon and Sun, K, = 35-785 and 16-427 cm, respectively.t This is

the usual formulation (Shureman 1941, p. 119, Doodson} 1921, p. 307).

)3,

(b) Radiational function

We define a radiational function

# = S(Ry[ps) cose in day-time (0<a<in),
0 innight-time ({n<<a<m),

where § = 1946 cal cm~2min~! is the ‘solar constant’. Using the expansion for 1/p as in
equation (A1), the day-time value can be written

SRIR) 13, Pu(w) = S(RIR) w1 +-Eu+..) (1>4>0) (A3)

t These figures are derived from the estimates quoted by Allen (1963): Me/Mq = 81-33 +0-03
Mg = 33270Mg, a = 6371-:0 km. The Moon’s and Sun’s mean equatorial horizontal parallaxes are
£ = 342262 and 879415, respectively. The ellipticity of the Earth is ignored in this derivation.

1 Doodson uses £K,.

69 Vor. 259. A.
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574 W. H. MUNK AND D. E. CARTWRIGHT
plus terms of order £? which are negligible (£, = 1/23455). Expanding % in spherical
harmonics, # = S(R/R) 3 «, P,(4), we find

n=0

1!

KO:Qfo(ﬂ+gﬂ2+...)dﬂ:i+%£+..-,
3 1

Kl:_éf (p4-Ep+ ... ) pdu = $+3¢,

=5 [ (k) @ de = fo+dE+ ..
etc. For subsequent odd coefficients, the leadmg terms can be written
_2n+10(1) (=1) (— :l
Ky =5 I: @) (6] 3—}—n £ (n=3,5,...),
and these are of order £ and can again be ignored. For the even terms

% =S(R @/R){4+§ﬂ+ E K Bap)}

_ 2n417(1) (—1 )(S—n) B
Kn =% [ (2)(@)...217) :I(n42,4,6,...).

The first term in (A 4) represents the mean radiation, Z, = 4S. For the entire surface this
equals 154ma? = ma?S, the cross-section times the mean radiation. The term is balanced by
infrared back radiation and enters into the overall heat balance of the planet. The first
term in (A 4) plays a role similar to the term £ in the expression (A 1) for the gravitational
potential. These terms represent mean radiation and mean force, respectively, and both
can be ignored in the study of tides. An essential distinction is that the radiational function
commences with P, (z) = g, the gravitational potential with P,(x).

(A4)

(¢) Expansion in Greenwich coordinates

The expressions (A 2) and (A 4) for the gravitational and radiational functions, respec-
tively, are of the form 3 f, (4, R) where p, R are functions of time. We need to express x(¢)

as a function of the station coordinates 6, A, and of the Moon’s (Sun’s) angular coordinates
Z(t), L(t). Let _—
Un 4 iVm — ¥m = (—1)m [”+ ] [ :l Pr(cosf) eimA (A5)
(n+m)

designate the (complex) spherical harmonic so normalized (Backus 1958) that
[1Ym2sinfdfdA = 1,
(1 _ﬂ2)%m dm+n

and Pr(p) = ol dgmin (#—1)" (n=0,|m|<n)
is the associated Legendre function:t

Py=1, P{ = cos 0, P} =sind,

Py =3cos’0—1%, P} = 3sinf cos 0, P2 = 3sin?0),

Py =5cos’f—3cosl, Pi=32sinf(5cos20—1), P%=15sin%0 cosf, P3 = 15sin30.
3 2 2 3 3

1 This is the normalization used by Morse & Feshbach (1953) and n!(n—m)! times the normalization by
Jeffreys & Jeffreys (1950).
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For any two points on a sphere, 6,4, ¢ = 1, 2, the expression

sum = 3 Y(0;,4,) Y3*(0p,4,)
m=-n
depends only on the distance between the two points, and is the same regardless of where the
coordinate system is centred. First, centre the coordinate system at the station P (:=1) with
zero longitude through the sublunar (subsolar) point @ (:=2):

2n+1P

sum = 3 Y7(0,0) Y*(a, 0) = ¥2(0) ¥3(u) = =P, (4.

m=—n

Next, orient the coordinates in accordance with the Greenwich system

sum = 3 Ym(60,)) Ym*(Z, L),

m=—n

ECUPTIC

Ficure 14. < is vernal equinox, we = 23°-452 is abliquity of ecliptic, /e is (instantaneous) longitude
of Sun © along the ecliptic. Zg is polar angle, Le terrestrial east longitude, ¢ (or ¥ @) is
the Sun’s right ascension.

Equating the two expressions for sum yields

B(W) =gy 3 YA*(Z,L) Y360,

le{U"(Z L)UY0,1)+2 Z [UrZ,L) Un(0,A)+Vr(Z,L) Vir(0, /1)]} (A6)

where Y = U-+iV; in equation (A 6) we have avoided negative values of m by use of the
identity ¥;™ = (—1)" Ym*. With this substitution for P,(x) the gravitational function(A 2)
or the radiational function (A 4) can be written in the form

SMZ,L; 0,2) = ep(Z, L) Y3(0,1) = ai(Z, L) Uy (0,0) +b3(Z, L) V(0,4). (A7)

(d) Solar orbital constants

We require the polar angle Z, the terrestrial longitude L and the distance R of Sun or
Moon in terms of the orbital parameters. From triangle » ©0Q, (figure 14) we have

cos Z, = sinlg sinwg, (A8)

sin4(90°+wy)

tan o = gt oo o) 2 blle + 20 —90), (A9)

69-2
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where 0, = 23°-452 is the obliquity of the ecliptic, and [, is the instantaneous longitude
(in the ecliptic). By Kepler’s laws,

lo = ho+2¢sin (hy—po) +3 62 sin2(he —po) + ..., (A10)

where 4, is the mean longitude, p, the longitude of perigee and ¢, the eccentricity of the
orbit.
The right ascension of Greenwich is given by

Y = 15°(1—120) + . (A11)
Then Lo = fo—v0 (A12)

is the longitude east of Greenwich of the Sun’s meridian. The terms ¢?(Z, L) vary with Lg
as exp (imLey), where mL, =m15°#" plus slowly varying terms, so that the argument
increases by 360° in approximately (360°/15°n) h. Accordingly we refer tom = 0,1, 2, ... as
the long period, diurnal, semidiurnal, ..., tides, respectively.

Finally, the distance R, between Sun and Earth is related to the eccentricity ¢, and the
mean anomoly 4, —pe by the law for an elliptical orbit:

Ro|Ro = 1+e4 08 (hg —po) +62 cos 2(he —peo) + .., (A13)

where R, < 1/(mean equatorial parallax), not the Sun’s mean distance. Equations (8), (12)
and (13) determine Z,, L, and R, in terms of ¢, p and ¢,. When these are substituted into
(A7) and (A 2), and the resulting expressions expanded in powers of small parameters (the
ellipticity, obliquity and parallax), we obtain the classical line spectrum of frequencies f,
(equation (2-2)).

It remains to express £, p and ¢, as functions of time. Let ¢ designate Greenwich time in
hours since 1 January 1900 at 0 hours ¢.c.T. Then

i+ 12k

T= (24) (36525)

(A14)

is the time in Julian centuries since noon, 31 December 1899, as used in most astronomical
texts. The Sun’s mean longitude, and the longitude of perigee (both in radians) are given by
he = 4:8816280+ 628-3319509 7' 0-0000052 Tz,}

Do = 4-90822954-0-0300053 7'+ 0-0000079 772, (A15)

respectively. The eccentricity is taken by Doodson as constant, ¢, = 0-0167504. A somewhat
more accurate expression is

¢ = 001675104 —0-00004180 7 — 0-000000126 72, (A16)

(¢) Lunar orbital constants
Here the situation is more complicated. The mean longitude /(( T’), longitude of perigee
p(T') and of the node n¢(7T") (all along the ecliptic) are given by
h¢ = 4-7200089 +8399-7092745 T'-+- 00000346 72,
P = 58351526+ 71:01804127—0-0001801 72, (A17)
ng = 4-5236016 — 33-75714637+0-0000363 7. |
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Solving the triangle v AQ with sides », 4Q, n¢ we have
COS W = COS Wg COS1—Sin Wy, sinicos g,
sin v = sinisinzng/sinw,

sin AQ = sin n¢sin we/sin wg,

cos 4Q = cos ng cos v+ cos e sin ng sin v,

tan $4Q = sin AQ/(1 4 cos AQ).

Ficure 15. < is vernal equinox. n¢ = Y Q is longitude (along ecliptic) of ascending node reckoned
from equinox. we = 23°-452 is obliquity of ecliptic, ¢ = 5°-145 is inclination of Moon’s orbit to
ecliptic. /(= A, is (instantaneous) longitude of Moon (, along its orbit. Zg is polar angle, L is
terrestrial east longitude, and < ¢, the Moon’s right ascension.

The mean longitude of the Moon in its orbit is
o= fl(( —ng+ AQ
and the (instantaneous) longitude A¢ in its orbit equalsT
l¢ = o+ 2¢qsin (h—pq) +§ ef sin 2(hc—pq)
+meq (A2 +283m) sin (h( — 2he +po) +m2(AE -+ $gm+15et /m) sin 2(h¢— k)
+1m?e¢ sin (8h( —2he — p() +Tom?eq sin (2h¢ — 3ho +po), (A18)
where ¢¢ = 0-054900 is the eccentricity of the Moon’s orbit, and m = 0-074804 the ratio of
mean motions of © to (. The Moon’s distance is given byt
R([Rq = 1+ (1+gm?) " [ cos (hq—pq) +eg cos 2(he—pq)
+meq (3 +2&Em) cos (hg —2ho +pq) +m?(1 +m +4fe(m) cos 2(h¢ —ho)
+32m2e cos (3h¢ — 2he — p¢) +Em?ee cos (2h( — 8ho + o) ]- (A19)

1 The usual formulae are correct to second order in ¢ and m. However, some of the third-order terms, given
completely in Smart (1953, pp. 281-285), are of the same numerical order of magnitude as the smaller
second-order terms, and may be important when z = 2 or greater. To include all the third-order terms would
involve 6 extra trigonometrical factors in each equation, and this seems hardly justified. By judicious
selection, the following equations each contain only two extra trigonometric factors, and reduce the magni-
tudes of the largest neglected terms from 0-0050 to 0-0005 in /¢, and from 0-0016 to 0-0002 in R(/R(.
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The polar distance Z¢ is given by
cosZ¢ =sinl(sinwg  (0<Z(<m). (A 20)
. 1000
Also, tan 3gp = 2O 00 17 —90°)

~ sind(90°—w()

with 0 < 3¥¢ < 7. The Moon’s right ascension is then v, = v+ ¢, and its longitude east of
hi

Greenwich is L= v+y(—ve. (A21)

APPENDIX B. SAMPLING DISTRIBUTIONS AND CONFIDENCE LIMITS
We refer to the complex spectrum estimators G,, H, (§4 (b)) at a particular frequency
(r/355) c/d, and consider ensemble averages of their product from analysis of p independent
segments of the time series. From equation (4-8) we obtain as estimate of the admittance Z,

Z = X+i¥ = (G HYG, GFy = Z+e
where the sampling erroris ¢ = {|N,| |G,| e ¥ )/{|G,|?). (B1)

The input energy |G,|?is by definition noise-free and approximately constant from sample
to sample, and the relative phase v, has uniform expectation in (0, 27). Therefore the real
and imaginary parts of (B 1) have approximately normal independent probability distribu-
tions, each with mean value zero, and variance given by

0% = (2p)7V o}|o = (2p) T RP(y72 1), (B2)
where ¢% and ¢% are the long-term average variances of noise and input signal respectively,
R? = X2+ Y? = |Z|?, and 92 is the true coherence. This result differs from the more difficult
case analysed by Goodman (1957), in which |G,| has a Rayleigh distribution appropriate

to a random input.
X and Y are thus unbiased, independent estimates of X and ¥, with the joint probability

distribution X Y) = (200 exp [ {(X — X)2+ (Y—Y)2}/20"]. (B3)

The distributions of R = ,/(X2+Y?) and § = arctan (X/Y) are derived by transforming
(B3) to the variables (R,) and integrating with respect to § and R respectively. With
normalized variables,

p=R/R, 0= 0—true phasclead, o= o¢'[R,
the results are p(p) = (p/o®) exp[—(p—1)%[20%]  [e=?""Ly(p[0?)], (B4)
p(0) = (2m) ' exp (—1/20%) [1+F(cos 0/7)], (B5)

where [ (x) is a modified Bessel Function, and

F(x) = xe%"zfo0 e ¥ ds.

The functions defined by (B 4) and (B 5) have been computed, and are represented in the
top half of figure (16) for ¢ = 0-1, 0-2, 0-4, 0-6, 0-8 and 1-0. For values of ¢ > 1-0 the distri-
butions are too broad to be of any practical use. For values of ¢ < 0-1, both p(p) and p(6)
approximate to normal distributions with variance 2.
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It is seen that the distribution of § is always symmetrical about § = 0 (i.e. f is an unbiased
estimator of #), but the distribution of p is biased positively (i.e. R tends to be somewhat
greater than R). The mean or ‘expected’ value of p is found to be

Gmto Fi(—451; —0), (B6)

probability, p

mean/o ] — r.ms.lg
0.8 i~
.. o o - =
5 - [-95%p 95%p
g
g 061 .
S
el » -
<
[oN
O
4 o4} i
Q
[=]
0.2 | .
0
L L I J b ). 1 i . 1
0 2 -2 0 2

Ficure 16. The upper diagrams show the probability distributions of (left) p = sample admittance/
true admittance, and (right) ¢ = sample phase—true phase, for stated values of the noise
parameter o = [(y~2—1)/2p]* where y2 is the coherence, and p the degrees of freedom. The
lower diagrams show the 95 9%, confidence limits of the same quantities, and also the mean and
r.m.s. values of p, all plotted against o.
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where | F(a; b; x) is Kummer’s hypergeometric function (tabulated in Slater 1960). How-
ever, its r.m.s. value is simply (1-+20%)2, (B7)

Both (B 6) and (B 7) are represented in the lower left-hand part of figure (16). The 95 9,
confidence limits of p and 6, defined such that 0-025 of the distribution lies to the left of the
lower, and 0-025 to the right of the upper limit, computed by quadrature, are also plotted.

The sampling distribution of the coherence estimate, 52 = |G, H*|?/(|G,| |H,|)?% is much
more complicated, even with constant |G,|. We have

72 = [(X+6)?+ (Y 465)?] [[(X+61) %4 (¥ +65) 2+ 6§ — e — €3]
1 (-G — ) /(R 26, X+ 26, V-6, (B3)
where e,+ie, =¢ and ¢ = (|N,|2|(|G,|». (B9)

With p =1, (i.e. no ensemble averaging), comparison of (B1) and (B9) shows that
€3 = €2 €3, so that 92 = 1 identically. With p > 1, it can be shown that 2 < 1, but 2 —921is
still biased positively by an amount which decreases with increasing p. We make the simpli-
fying approximation that the ‘expected’ value of 42, say £(§2), is the same as the right side
of (B8) with numerator and denominator each put equal to its own ‘expected’ value.

A little algebra then gives
s S E?) =y +p71H (1 —p?).

Values of E(72) so defined compare reasonably well with exact mean values of the distribu-
tions for Goodman’s case of random input, computed and tabulated by Amos & Koopmans
(1963). An approximately unbiased estimate of the true coherence y? is therefore

7=1)/p—1) (p>1). (B10)

The expression (B 10) is negative if §2 < p~1, but in such a case the true coherence (funda-
mentally positive) is probably too small to be of interest.

To obtain the confidence limits shown in figure 1, etc., we used the unbiased estimate of
y? from (B10) to form the normalized parameter ¢2 = (2p)~! (y~2—1), and thence the
normalized confidence limits for p and 6. The limits for R and 6 are then obtained from
R and § by dividing by or subtracting, respectively, the normalized limits. The limits for
X and Y are simply X4-1-960", ¥4-1-960", from (B 2).

Although the above results are derived strictly for a fixed frequency 7, which implies
|G,| is nearly constant, they may be shown to be approximately valid for ensemble averages
over adjacent values of r also.

ArpeEnDiIx C. HorN FOLDING

Suppose the tide record is sampled some fixed time ¢ h following the meridian passage of
the mean Moon. A plot of such points varies slowly with time, with frequencies up to a few
cycles per month. The spectrum H( f) of these discrete points can be related to the spectrum
H(f) of the continuous record, {(f), as follows: daily sampling is equivalent to multiplying
{(¢) with a ‘Dirac Comb’ of delta functions,

D(t) = 0(t) +(¢+24 lunar hours) +8(¢--481h) +....
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TIDAL SPECTROSCOPY AND PREDICTION 581
According to the convolution theorem, the spectrum of the discrete record {(¢) D(¢) is
given by Hy(f) = H(f)+ Hlg—))+ H{g+/)+ H2g—) + .

where ¢gis the sampling frequency, once per lunar day. Itis asif H( /) were folded in accordian
fashion, with the frequencies M, M,, M;,M,, ..., all overlapping with zero frequency. An
analysis of the once-daily points for (0 k3 k5 £y k5 kg) of species 0 includes the effects of
(ky +ky +ky +ky +ki +ks) and (ky —ky —ky —ky —k; —kg) of species £, = 1,2, ...
in the continuous record. Horn uses 44 frequencies, starting from zero frequency (0 0 0 0 0)
and the nodal frequency (0 0 0 0 1) to 4c/m (0 4 —4 0 0). This gives a satisfactory
prediction for ¢ lunar hours, with no need for f, u-factors. To predict the complete marigram,
the analysis is repeated for each hour ¢, thus yielding 24 X 44 amplitudes and phases. In a
similar manner, Horn analyses and predicts the times and heights of the four daily extremes.
The method has some obvious advantages when limitations imposed by analogue analysers
restricts the number of constituents which can be evaluated at one time, or if the prediction
can be limited to extremes.
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